xlnet-1 / README.md
vedantjumle's picture
Training in progress epoch 48
531bc0b
|
raw
history blame
4.56 kB
metadata
license: mit
base_model: xlnet-large-cased
tags:
  - generated_from_keras_callback
model-index:
  - name: vedantjumle/xlnet-1
    results: []

vedantjumle/xlnet-1

This model is a fine-tuned version of xlnet-large-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0138
  • Validation Loss: 0.4046
  • Train Accuracy: 0.9167
  • Epoch: 48

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 6000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
5.1007 4.9565 0.0133 0
5.0503 4.8870 0.0367 1
4.9095 4.6674 0.07 2
4.5990 4.1706 0.2033 3
4.0403 3.4616 0.4267 4
3.2648 2.6274 0.6033 5
2.5315 1.8851 0.71 6
1.8938 1.4084 0.8033 7
1.3599 1.0397 0.84 8
0.9752 0.7675 0.8667 9
0.6995 0.6496 0.8667 10
0.5132 0.5293 0.89 11
0.3848 0.4618 0.9 12
0.2920 0.4516 0.8733 13
0.2286 0.4097 0.8967 14
0.1789 0.3951 0.9 15
0.1512 0.3845 0.8933 16
0.1320 0.3741 0.9067 17
0.1116 0.3553 0.9067 18
0.0935 0.3710 0.9 19
0.0886 0.3831 0.9067 20
0.0723 0.3490 0.91 21
0.0641 0.3448 0.91 22
0.0601 0.3682 0.9 23
0.0590 0.3716 0.9033 24
0.0491 0.3619 0.91 25
0.0404 0.3728 0.9033 26
0.0394 0.3624 0.91 27
0.0394 0.3249 0.9167 28
0.0387 0.3465 0.91 29
0.0456 0.3580 0.91 30
0.0323 0.3645 0.9133 31
0.0308 0.3633 0.9133 32
0.0312 0.3658 0.9033 33
0.0244 0.3621 0.9067 34
0.0255 0.3705 0.9067 35
0.0238 0.3618 0.9067 36
0.0222 0.3603 0.9067 37
0.0230 0.3678 0.9067 38
0.0272 0.4125 0.9033 39
0.0318 0.3973 0.91 40
0.0262 0.3871 0.9067 41
0.0299 0.3935 0.9033 42
0.0285 0.4192 0.9067 43
0.0206 0.4100 0.9133 44
0.0188 0.4106 0.9067 45
0.0179 0.4355 0.91 46
0.0151 0.4091 0.9133 47
0.0138 0.4046 0.9167 48

Framework versions

  • Transformers 4.34.0
  • TensorFlow 2.13.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1