metadata
base_model: Alibaba-NLP/gte-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Żywot św. Stanisława
sentences:
- czym różni się Żywot św. Stanisława od Legendy św. Stanisława?
- Mistrzostwa Krajów Bałkańskich w Lekkoatletyce 2012
- dlaczego współcześni perfumiarze rzadko stosują zapach lawendy?
- source_sentence: Bitwa nad Stones River
sentences:
- czyim zwycięstwem zakończyła się bitwa nad Stones River?
- w jakim kraju jest przyznawany Order Białego Lotosu?
- kiedy Victor Horta otrzymał tytuł barona?
- source_sentence: gdzie rośnie bokkonia?
sentences:
- gdzie występuje rogownica szerokolistna?
- ile goli dla Slawii Sofia strzelił Władimir Iwanow?
- Przewody płciowe męskie i żeńskie uchodzą u nich odrębnymi otworami.
- source_sentence: czym jest Kompas Sztuki?
sentences:
- ' Projekt Kompas Sztuki: Galeria m2 (m kwadrat).'
- 'Do rodzaju Caraipa zaliczanych jest ok. 55 gatunków:'
- w którym mieście działał malarz renesansowy Jacobello del Fiore?
- source_sentence: Sen o zastrzyku Irmy
sentences:
- gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?
- ile razy Srebrna Biblia była przywożona do Szwecji?
- jaką techniką został namalowany obraz Bruegela Chrystus i cudzołożnica?
model-index:
- name: gte-base-en-v1.5-klej-dyk-v0.1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.20673076923076922
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4855769230769231
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6730769230769231
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7908653846153846
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.20673076923076922
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16185897435897434
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1346153846153846
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07908653846153846
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.20673076923076922
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4855769230769231
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6730769230769231
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7908653846153846
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.48188411689532745
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3839848519536019
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3897833313631923
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.19471153846153846
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.47596153846153844
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6586538461538461
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7716346153846154
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19471153846153846
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15865384615384615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13173076923076923
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07716346153846153
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19471153846153846
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.47596153846153844
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6586538461538461
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7716346153846154
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4699784661922609
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3740689865689866
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3807931969694512
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.19471153846153846
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4639423076923077
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6466346153846154
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7307692307692307
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19471153846153846
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15464743589743588
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12932692307692306
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07307692307692307
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19471153846153846
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4639423076923077
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6466346153846154
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7307692307692307
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4534215890186354
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.36472355769230763
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3730539351737456
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.19471153846153846
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42788461538461536
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5721153846153846
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6899038461538461
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19471153846153846
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14262820512820512
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1144230769230769
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0689903846153846
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19471153846153846
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42788461538461536
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5721153846153846
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6899038461538461
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.42667299025011857
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3438606532356531
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3517227578608955
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.1778846153846154
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3701923076923077
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.45913461538461536
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5793269230769231
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1778846153846154
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12339743589743589
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.09182692307692308
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05793269230769231
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1778846153846154
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3701923076923077
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.45913461538461536
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5793269230769231
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3628128840276353
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.29511885683760675
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3068359520768717
name: Cosine Map@100
gte-base-en-v1.5-klej-dyk-v0.1
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Sen o zastrzyku Irmy',
'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?',
'ile razy Srebrna Biblia była przywożona do Szwecji?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2067 |
cosine_accuracy@3 |
0.4856 |
cosine_accuracy@5 |
0.6731 |
cosine_accuracy@10 |
0.7909 |
cosine_precision@1 |
0.2067 |
cosine_precision@3 |
0.1619 |
cosine_precision@5 |
0.1346 |
cosine_precision@10 |
0.0791 |
cosine_recall@1 |
0.2067 |
cosine_recall@3 |
0.4856 |
cosine_recall@5 |
0.6731 |
cosine_recall@10 |
0.7909 |
cosine_ndcg@10 |
0.4819 |
cosine_mrr@10 |
0.384 |
cosine_map@100 |
0.3898 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1947 |
cosine_accuracy@3 |
0.476 |
cosine_accuracy@5 |
0.6587 |
cosine_accuracy@10 |
0.7716 |
cosine_precision@1 |
0.1947 |
cosine_precision@3 |
0.1587 |
cosine_precision@5 |
0.1317 |
cosine_precision@10 |
0.0772 |
cosine_recall@1 |
0.1947 |
cosine_recall@3 |
0.476 |
cosine_recall@5 |
0.6587 |
cosine_recall@10 |
0.7716 |
cosine_ndcg@10 |
0.47 |
cosine_mrr@10 |
0.3741 |
cosine_map@100 |
0.3808 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1947 |
cosine_accuracy@3 |
0.4639 |
cosine_accuracy@5 |
0.6466 |
cosine_accuracy@10 |
0.7308 |
cosine_precision@1 |
0.1947 |
cosine_precision@3 |
0.1546 |
cosine_precision@5 |
0.1293 |
cosine_precision@10 |
0.0731 |
cosine_recall@1 |
0.1947 |
cosine_recall@3 |
0.4639 |
cosine_recall@5 |
0.6466 |
cosine_recall@10 |
0.7308 |
cosine_ndcg@10 |
0.4534 |
cosine_mrr@10 |
0.3647 |
cosine_map@100 |
0.3731 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1947 |
cosine_accuracy@3 |
0.4279 |
cosine_accuracy@5 |
0.5721 |
cosine_accuracy@10 |
0.6899 |
cosine_precision@1 |
0.1947 |
cosine_precision@3 |
0.1426 |
cosine_precision@5 |
0.1144 |
cosine_precision@10 |
0.069 |
cosine_recall@1 |
0.1947 |
cosine_recall@3 |
0.4279 |
cosine_recall@5 |
0.5721 |
cosine_recall@10 |
0.6899 |
cosine_ndcg@10 |
0.4267 |
cosine_mrr@10 |
0.3439 |
cosine_map@100 |
0.3517 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1779 |
cosine_accuracy@3 |
0.3702 |
cosine_accuracy@5 |
0.4591 |
cosine_accuracy@10 |
0.5793 |
cosine_precision@1 |
0.1779 |
cosine_precision@3 |
0.1234 |
cosine_precision@5 |
0.0918 |
cosine_precision@10 |
0.0579 |
cosine_recall@1 |
0.1779 |
cosine_recall@3 |
0.3702 |
cosine_recall@5 |
0.4591 |
cosine_recall@10 |
0.5793 |
cosine_ndcg@10 |
0.3628 |
cosine_mrr@10 |
0.2951 |
cosine_map@100 |
0.3068 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 89.43 tokens
- max: 507 tokens
|
- min: 9 tokens
- mean: 30.98 tokens
- max: 76 tokens
|
- Samples:
positive |
anchor |
Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią. |
jakie choroby genetyczne dziedziczą się autosomalnie dominująco? |
Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji. |
gdzie obecnie znajduje się starożytne miasto Gorgippia? |
Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) |
kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 4
per_device_eval_batch_size
: 4
gradient_accumulation_steps
: 4
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 4
per_device_eval_batch_size
: 4
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 4
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0043 |
1 |
3.4442 |
- |
- |
- |
- |
- |
0.0086 |
2 |
1.3916 |
- |
- |
- |
- |
- |
0.0128 |
3 |
3.1284 |
- |
- |
- |
- |
- |
0.0171 |
4 |
2.2049 |
- |
- |
- |
- |
- |
0.0214 |
5 |
1.1821 |
- |
- |
- |
- |
- |
0.0257 |
6 |
2.6633 |
- |
- |
- |
- |
- |
0.0299 |
7 |
1.8173 |
- |
- |
- |
- |
- |
0.0342 |
8 |
3.8366 |
- |
- |
- |
- |
- |
0.0385 |
9 |
2.4439 |
- |
- |
- |
- |
- |
0.0428 |
10 |
1.9733 |
- |
- |
- |
- |
- |
0.0471 |
11 |
3.7611 |
- |
- |
- |
- |
- |
0.0513 |
12 |
2.578 |
- |
- |
- |
- |
- |
0.0556 |
13 |
1.656 |
- |
- |
- |
- |
- |
0.0599 |
14 |
2.1508 |
- |
- |
- |
- |
- |
0.0642 |
15 |
1.4962 |
- |
- |
- |
- |
- |
0.0684 |
16 |
1.5743 |
- |
- |
- |
- |
- |
0.0727 |
17 |
2.5404 |
- |
- |
- |
- |
- |
0.0770 |
18 |
1.1436 |
- |
- |
- |
- |
- |
0.0813 |
19 |
3.1786 |
- |
- |
- |
- |
- |
0.0856 |
20 |
2.3377 |
- |
- |
- |
- |
- |
0.0898 |
21 |
1.9693 |
- |
- |
- |
- |
- |
0.0941 |
22 |
2.3942 |
- |
- |
- |
- |
- |
0.0984 |
23 |
2.2259 |
- |
- |
- |
- |
- |
0.1027 |
24 |
3.3127 |
- |
- |
- |
- |
- |
0.1070 |
25 |
1.3368 |
- |
- |
- |
- |
- |
0.1112 |
26 |
2.5546 |
- |
- |
- |
- |
- |
0.1155 |
27 |
1.5828 |
- |
- |
- |
- |
- |
0.1198 |
28 |
1.908 |
- |
- |
- |
- |
- |
0.1241 |
29 |
1.9959 |
- |
- |
- |
- |
- |
0.1283 |
30 |
1.2909 |
- |
- |
- |
- |
- |
0.1326 |
31 |
1.7274 |
- |
- |
- |
- |
- |
0.1369 |
32 |
1.9055 |
- |
- |
- |
- |
- |
0.1412 |
33 |
3.3274 |
- |
- |
- |
- |
- |
0.1455 |
34 |
2.5554 |
- |
- |
- |
- |
- |
0.1497 |
35 |
1.7876 |
- |
- |
- |
- |
- |
0.1540 |
36 |
2.0285 |
- |
- |
- |
- |
- |
0.1583 |
37 |
3.0761 |
- |
- |
- |
- |
- |
0.1626 |
38 |
3.4766 |
- |
- |
- |
- |
- |
0.1668 |
39 |
1.4406 |
- |
- |
- |
- |
- |
0.1711 |
40 |
1.7384 |
- |
- |
- |
- |
- |
0.1754 |
41 |
1.8092 |
- |
- |
- |
- |
- |
0.1797 |
42 |
3.146 |
- |
- |
- |
- |
- |
0.1840 |
43 |
1.9202 |
- |
- |
- |
- |
- |
0.1882 |
44 |
2.4776 |
- |
- |
- |
- |
- |
0.1925 |
45 |
2.273 |
- |
- |
- |
- |
- |
0.1968 |
46 |
1.2158 |
- |
- |
- |
- |
- |
0.2011 |
47 |
0.6314 |
- |
- |
- |
- |
- |
0.2053 |
48 |
1.2217 |
- |
- |
- |
- |
- |
0.2096 |
49 |
1.7213 |
- |
- |
- |
- |
- |
0.2139 |
50 |
2.1634 |
- |
- |
- |
- |
- |
0.2182 |
51 |
1.0438 |
- |
- |
- |
- |
- |
0.2225 |
52 |
1.4275 |
- |
- |
- |
- |
- |
0.2267 |
53 |
1.6839 |
- |
- |
- |
- |
- |
0.2310 |
54 |
1.5435 |
- |
- |
- |
- |
- |
0.2353 |
55 |
2.3815 |
- |
- |
- |
- |
- |
0.2396 |
56 |
2.3042 |
- |
- |
- |
- |
- |
0.2439 |
57 |
2.3085 |
- |
- |
- |
- |
- |
0.2481 |
58 |
2.0621 |
- |
- |
- |
- |
- |
0.2524 |
59 |
1.339 |
- |
- |
- |
- |
- |
0.2567 |
60 |
0.9167 |
- |
- |
- |
- |
- |
0.2610 |
61 |
0.8112 |
- |
- |
- |
- |
- |
0.2652 |
62 |
2.2327 |
- |
- |
- |
- |
- |
0.2695 |
63 |
2.6571 |
- |
- |
- |
- |
- |
0.2738 |
64 |
1.8199 |
- |
- |
- |
- |
- |
0.2781 |
65 |
2.6123 |
- |
- |
- |
- |
- |
0.2824 |
66 |
0.6182 |
- |
- |
- |
- |
- |
0.2866 |
67 |
1.8278 |
- |
- |
- |
- |
- |
0.2909 |
68 |
1.6969 |
- |
- |
- |
- |
- |
0.2952 |
69 |
0.7902 |
- |
- |
- |
- |
- |
0.2995 |
70 |
2.1857 |
- |
- |
- |
- |
- |
0.3037 |
71 |
0.8371 |
- |
- |
- |
- |
- |
0.3080 |
72 |
2.2118 |
- |
- |
- |
- |
- |
0.3123 |
73 |
0.2464 |
- |
- |
- |
- |
- |
0.3166 |
74 |
1.5362 |
- |
- |
- |
- |
- |
0.3209 |
75 |
2.1047 |
- |
- |
- |
- |
- |
0.3251 |
76 |
1.2654 |
- |
- |
- |
- |
- |
0.3294 |
77 |
1.5016 |
- |
- |
- |
- |
- |
0.3337 |
78 |
0.9273 |
- |
- |
- |
- |
- |
0.3380 |
79 |
0.9228 |
- |
- |
- |
- |
- |
0.3422 |
80 |
0.8002 |
- |
- |
- |
- |
- |
0.3465 |
81 |
0.8325 |
- |
- |
- |
- |
- |
0.3508 |
82 |
1.4914 |
- |
- |
- |
- |
- |
0.3551 |
83 |
1.5896 |
- |
- |
- |
- |
- |
0.3594 |
84 |
1.8716 |
- |
- |
- |
- |
- |
0.3636 |
85 |
1.0927 |
- |
- |
- |
- |
- |
0.3679 |
86 |
1.1389 |
- |
- |
- |
- |
- |
0.3722 |
87 |
0.9251 |
- |
- |
- |
- |
- |
0.3765 |
88 |
1.3966 |
- |
- |
- |
- |
- |
0.3807 |
89 |
2.2866 |
- |
- |
- |
- |
- |
0.3850 |
90 |
1.3756 |
- |
- |
- |
- |
- |
0.3893 |
91 |
0.7271 |
- |
- |
- |
- |
- |
0.3936 |
92 |
1.7267 |
- |
- |
- |
- |
- |
0.3979 |
93 |
2.0597 |
- |
- |
- |
- |
- |
0.4021 |
94 |
1.9522 |
- |
- |
- |
- |
- |
0.4064 |
95 |
1.0192 |
- |
- |
- |
- |
- |
0.4107 |
96 |
2.987 |
- |
- |
- |
- |
- |
0.4150 |
97 |
1.9623 |
- |
- |
- |
- |
- |
0.4193 |
98 |
2.0779 |
- |
- |
- |
- |
- |
0.4235 |
99 |
1.6256 |
- |
- |
- |
- |
- |
0.4278 |
100 |
1.6273 |
- |
- |
- |
- |
- |
0.4321 |
101 |
2.848 |
- |
- |
- |
- |
- |
0.4364 |
102 |
1.4129 |
- |
- |
- |
- |
- |
0.4406 |
103 |
0.7578 |
- |
- |
- |
- |
- |
0.4449 |
104 |
0.7026 |
- |
- |
- |
- |
- |
0.4492 |
105 |
1.5958 |
- |
- |
- |
- |
- |
0.4535 |
106 |
2.5135 |
- |
- |
- |
- |
- |
0.4578 |
107 |
0.5845 |
- |
- |
- |
- |
- |
0.4620 |
108 |
1.4398 |
- |
- |
- |
- |
- |
0.4663 |
109 |
1.0315 |
- |
- |
- |
- |
- |
0.4706 |
110 |
0.7233 |
- |
- |
- |
- |
- |
0.4749 |
111 |
0.4793 |
- |
- |
- |
- |
- |
0.4791 |
112 |
0.52 |
- |
- |
- |
- |
- |
0.4834 |
113 |
0.4099 |
- |
- |
- |
- |
- |
0.4877 |
114 |
1.2661 |
- |
- |
- |
- |
- |
0.4920 |
115 |
1.7636 |
- |
- |
- |
- |
- |
0.4963 |
116 |
2.0581 |
- |
- |
- |
- |
- |
0.5005 |
117 |
0.9092 |
- |
- |
- |
- |
- |
0.5048 |
118 |
1.5175 |
- |
- |
- |
- |
- |
0.5091 |
119 |
1.7537 |
- |
- |
- |
- |
- |
0.5134 |
120 |
0.984 |
- |
- |
- |
- |
- |
0.5176 |
121 |
0.5867 |
- |
- |
- |
- |
- |
0.5219 |
122 |
0.7082 |
- |
- |
- |
- |
- |
0.5262 |
123 |
1.1787 |
- |
- |
- |
- |
- |
0.5305 |
124 |
1.0118 |
- |
- |
- |
- |
- |
0.5348 |
125 |
2.0169 |
- |
- |
- |
- |
- |
0.5390 |
126 |
1.2881 |
- |
- |
- |
- |
- |
0.5433 |
127 |
1.4748 |
- |
- |
- |
- |
- |
0.5476 |
128 |
1.9601 |
- |
- |
- |
- |
- |
0.5519 |
129 |
2.7434 |
- |
- |
- |
- |
- |
0.5561 |
130 |
1.3171 |
- |
- |
- |
- |
- |
0.5604 |
131 |
1.221 |
- |
- |
- |
- |
- |
0.5647 |
132 |
1.24 |
- |
- |
- |
- |
- |
0.5690 |
133 |
1.7489 |
- |
- |
- |
- |
- |
0.5733 |
134 |
1.5888 |
- |
- |
- |
- |
- |
0.5775 |
135 |
1.6449 |
- |
- |
- |
- |
- |
0.5818 |
136 |
2.2163 |
- |
- |
- |
- |
- |
0.5861 |
137 |
1.3148 |
- |
- |
- |
- |
- |
0.5904 |
138 |
0.9209 |
- |
- |
- |
- |
- |
0.5947 |
139 |
1.3826 |
- |
- |
- |
- |
- |
0.5989 |
140 |
0.7924 |
- |
- |
- |
- |
- |
0.6032 |
141 |
0.603 |
- |
- |
- |
- |
- |
0.6075 |
142 |
1.6646 |
- |
- |
- |
- |
- |
0.6118 |
143 |
1.2747 |
- |
- |
- |
- |
- |
0.6160 |
144 |
2.4583 |
- |
- |
- |
- |
- |
0.6203 |
145 |
2.0143 |
- |
- |
- |
- |
- |
0.6246 |
146 |
1.8152 |
- |
- |
- |
- |
- |
0.6289 |
147 |
0.6461 |
- |
- |
- |
- |
- |
0.6332 |
148 |
0.5025 |
- |
- |
- |
- |
- |
0.6374 |
149 |
0.6427 |
- |
- |
- |
- |
- |
0.6417 |
150 |
1.6096 |
- |
- |
- |
- |
- |
0.6460 |
151 |
3.0679 |
- |
- |
- |
- |
- |
0.6503 |
152 |
2.8778 |
- |
- |
- |
- |
- |
0.6545 |
153 |
1.2788 |
- |
- |
- |
- |
- |
0.6588 |
154 |
0.5234 |
- |
- |
- |
- |
- |
0.6631 |
155 |
1.2211 |
- |
- |
- |
- |
- |
0.6674 |
156 |
1.5935 |
- |
- |
- |
- |
- |
0.6717 |
157 |
1.892 |
- |
- |
- |
- |
- |
0.6759 |
158 |
0.9767 |
- |
- |
- |
- |
- |
0.6802 |
159 |
1.8692 |
- |
- |
- |
- |
- |
0.6845 |
160 |
1.9853 |
- |
- |
- |
- |
- |
0.6888 |
161 |
0.9568 |
- |
- |
- |
- |
- |
0.6930 |
162 |
0.526 |
- |
- |
- |
- |
- |
0.6973 |
163 |
0.6527 |
- |
- |
- |
- |
- |
0.7016 |
164 |
1.2888 |
- |
- |
- |
- |
- |
0.7059 |
165 |
0.9485 |
- |
- |
- |
- |
- |
0.7102 |
166 |
2.3512 |
- |
- |
- |
- |
- |
0.7144 |
167 |
2.5909 |
- |
- |
- |
- |
- |
0.7187 |
168 |
1.9271 |
- |
- |
- |
- |
- |
0.7230 |
169 |
1.7218 |
- |
- |
- |
- |
- |
0.7273 |
170 |
1.6517 |
- |
- |
- |
- |
- |
0.7316 |
171 |
1.3378 |
- |
- |
- |
- |
- |
0.7358 |
172 |
1.5502 |
- |
- |
- |
- |
- |
0.7401 |
173 |
1.7182 |
- |
- |
- |
- |
- |
0.7444 |
174 |
2.0422 |
- |
- |
- |
- |
- |
0.7487 |
175 |
2.1827 |
- |
- |
- |
- |
- |
0.7529 |
176 |
0.917 |
- |
- |
- |
- |
- |
0.7572 |
177 |
2.4209 |
- |
- |
- |
- |
- |
0.7615 |
178 |
0.7705 |
- |
- |
- |
- |
- |
0.7658 |
179 |
0.4089 |
- |
- |
- |
- |
- |
0.7701 |
180 |
0.7368 |
- |
- |
- |
- |
- |
0.7743 |
181 |
0.7583 |
- |
- |
- |
- |
- |
0.7786 |
182 |
1.2686 |
- |
- |
- |
- |
- |
0.7829 |
183 |
0.9401 |
- |
- |
- |
- |
- |
0.7872 |
184 |
1.9668 |
- |
- |
- |
- |
- |
0.7914 |
185 |
1.7905 |
- |
- |
- |
- |
- |
0.7957 |
186 |
0.4372 |
- |
- |
- |
- |
- |
0.8 |
187 |
1.3618 |
- |
- |
- |
- |
- |
0.8043 |
188 |
1.0816 |
- |
- |
- |
- |
- |
0.8086 |
189 |
0.5696 |
- |
- |
- |
- |
- |
0.8128 |
190 |
0.7607 |
- |
- |
- |
- |
- |
0.8171 |
191 |
2.8499 |
- |
- |
- |
- |
- |
0.8214 |
192 |
2.251 |
- |
- |
- |
- |
- |
0.8257 |
193 |
2.3819 |
- |
- |
- |
- |
- |
0.8299 |
194 |
0.4848 |
- |
- |
- |
- |
- |
0.8342 |
195 |
1.0241 |
- |
- |
- |
- |
- |
0.8385 |
196 |
0.4664 |
- |
- |
- |
- |
- |
0.8428 |
197 |
1.0253 |
- |
- |
- |
- |
- |
0.8471 |
198 |
1.3517 |
- |
- |
- |
- |
- |
0.8513 |
199 |
1.5231 |
- |
- |
- |
- |
- |
0.8556 |
200 |
1.9424 |
- |
- |
- |
- |
- |
0.8599 |
201 |
1.6661 |
- |
- |
- |
- |
- |
0.8642 |
202 |
0.204 |
- |
- |
- |
- |
- |
0.8684 |
203 |
1.805 |
- |
- |
- |
- |
- |
0.8727 |
204 |
1.2863 |
- |
- |
- |
- |
- |
0.8770 |
205 |
2.3292 |
- |
- |
- |
- |
- |
0.8813 |
206 |
1.4561 |
- |
- |
- |
- |
- |
0.8856 |
207 |
0.4618 |
- |
- |
- |
- |
- |
0.8898 |
208 |
0.9744 |
- |
- |
- |
- |
- |
0.8941 |
209 |
0.5276 |
- |
- |
- |
- |
- |
0.8984 |
210 |
0.8812 |
- |
- |
- |
- |
- |
0.9027 |
211 |
0.6778 |
- |
- |
- |
- |
- |
0.9070 |
212 |
1.2382 |
- |
- |
- |
- |
- |
0.9112 |
213 |
0.7281 |
- |
- |
- |
- |
- |
0.9155 |
214 |
1.4499 |
- |
- |
- |
- |
- |
0.9198 |
215 |
1.8433 |
- |
- |
- |
- |
- |
0.9241 |
216 |
0.4683 |
- |
- |
- |
- |
- |
0.9283 |
217 |
0.7045 |
- |
- |
- |
- |
- |
0.9326 |
218 |
1.0181 |
- |
- |
- |
- |
- |
0.9369 |
219 |
1.104 |
- |
- |
- |
- |
- |
0.9412 |
220 |
0.4282 |
- |
- |
- |
- |
- |
0.9455 |
221 |
1.8888 |
- |
- |
- |
- |
- |
0.9497 |
222 |
0.7936 |
- |
- |
- |
- |
- |
0.9540 |
223 |
2.5346 |
- |
- |
- |
- |
- |
0.9583 |
224 |
0.8337 |
- |
- |
- |
- |
- |
0.9626 |
225 |
1.6245 |
- |
- |
- |
- |
- |
0.9668 |
226 |
0.8955 |
- |
- |
- |
- |
- |
0.9711 |
227 |
0.9813 |
- |
- |
- |
- |
- |
0.9754 |
228 |
0.9429 |
- |
- |
- |
- |
- |
0.9797 |
229 |
1.5297 |
- |
- |
- |
- |
- |
0.9840 |
230 |
1.0861 |
- |
- |
- |
- |
- |
0.9882 |
231 |
1.5228 |
- |
- |
- |
- |
- |
0.9925 |
232 |
0.8545 |
- |
- |
- |
- |
- |
0.9968 |
233 |
2.3052 |
0.3541 |
0.3928 |
0.3969 |
0.2990 |
0.4032 |
1.0011 |
234 |
0.5205 |
- |
- |
- |
- |
- |
1.0053 |
235 |
1.6719 |
- |
- |
- |
- |
- |
1.0096 |
236 |
0.5632 |
- |
- |
- |
- |
- |
1.0139 |
237 |
0.3602 |
- |
- |
- |
- |
- |
1.0182 |
238 |
0.4581 |
- |
- |
- |
- |
- |
1.0225 |
239 |
1.7666 |
- |
- |
- |
- |
- |
1.0267 |
240 |
0.925 |
- |
- |
- |
- |
- |
1.0310 |
241 |
0.9264 |
- |
- |
- |
- |
- |
1.0353 |
242 |
1.5405 |
- |
- |
- |
- |
- |
1.0396 |
243 |
0.5346 |
- |
- |
- |
- |
- |
1.0439 |
244 |
1.1432 |
- |
- |
- |
- |
- |
1.0481 |
245 |
2.7575 |
- |
- |
- |
- |
- |
1.0524 |
246 |
0.6409 |
- |
- |
- |
- |
- |
1.0567 |
247 |
0.5409 |
- |
- |
- |
- |
- |
1.0610 |
248 |
0.5996 |
- |
- |
- |
- |
- |
1.0652 |
249 |
0.6733 |
- |
- |
- |
- |
- |
1.0695 |
250 |
0.9336 |
- |
- |
- |
- |
- |
1.0738 |
251 |
1.4003 |
- |
- |
- |
- |
- |
1.0781 |
252 |
0.544 |
- |
- |
- |
- |
- |
1.0824 |
253 |
1.871 |
- |
- |
- |
- |
- |
1.0866 |
254 |
1.8823 |
- |
- |
- |
- |
- |
1.0909 |
255 |
0.9452 |
- |
- |
- |
- |
- |
1.0952 |
256 |
0.5241 |
- |
- |
- |
- |
- |
1.0995 |
257 |
0.5349 |
- |
- |
- |
- |
- |
1.1037 |
258 |
1.7114 |
- |
- |
- |
- |
- |
1.1080 |
259 |
0.6899 |
- |
- |
- |
- |
- |
1.1123 |
260 |
0.657 |
- |
- |
- |
- |
- |
1.1166 |
261 |
0.5195 |
- |
- |
- |
- |
- |
1.1209 |
262 |
1.3961 |
- |
- |
- |
- |
- |
1.1251 |
263 |
0.429 |
- |
- |
- |
- |
- |
1.1294 |
264 |
0.0763 |
- |
- |
- |
- |
- |
1.1337 |
265 |
0.7172 |
- |
- |
- |
- |
- |
1.1380 |
266 |
0.408 |
- |
- |
- |
- |
- |
1.1422 |
267 |
0.7704 |
- |
- |
- |
- |
- |
1.1465 |
268 |
0.7025 |
- |
- |
- |
- |
- |
1.1508 |
269 |
0.4682 |
- |
- |
- |
- |
- |
1.1551 |
270 |
0.4666 |
- |
- |
- |
- |
- |
1.1594 |
271 |
1.8544 |
- |
- |
- |
- |
- |
1.1636 |
272 |
0.5303 |
- |
- |
- |
- |
- |
1.1679 |
273 |
0.6873 |
- |
- |
- |
- |
- |
1.1722 |
274 |
0.6294 |
- |
- |
- |
- |
- |
1.1765 |
275 |
1.7406 |
- |
- |
- |
- |
- |
1.1807 |
276 |
0.9965 |
- |
- |
- |
- |
- |
1.1850 |
277 |
0.5852 |
- |
- |
- |
- |
- |
1.1893 |
278 |
0.7836 |
- |
- |
- |
- |
- |
1.1936 |
279 |
0.5689 |
- |
- |
- |
- |
- |
1.1979 |
280 |
0.3104 |
- |
- |
- |
- |
- |
1.2021 |
281 |
0.1838 |
- |
- |
- |
- |
- |
1.2064 |
282 |
1.2004 |
- |
- |
- |
- |
- |
1.2107 |
283 |
0.2965 |
- |
- |
- |
- |
- |
1.2150 |
284 |
0.8235 |
- |
- |
- |
- |
- |
1.2193 |
285 |
0.4341 |
- |
- |
- |
- |
- |
1.2235 |
286 |
0.8613 |
- |
- |
- |
- |
- |
1.2278 |
287 |
0.2466 |
- |
- |
- |
- |
- |
1.2321 |
288 |
0.4417 |
- |
- |
- |
- |
- |
1.2364 |
289 |
0.3849 |
- |
- |
- |
- |
- |
1.2406 |
290 |
1.0044 |
- |
- |
- |
- |
- |
1.2449 |
291 |
0.4567 |
- |
- |
- |
- |
- |
1.2492 |
292 |
0.7786 |
- |
- |
- |
- |
- |
1.2535 |
293 |
0.1726 |
- |
- |
- |
- |
- |
1.2578 |
294 |
0.6764 |
- |
- |
- |
- |
- |
1.2620 |
295 |
0.5581 |
- |
- |
- |
- |
- |
1.2663 |
296 |
0.3714 |
- |
- |
- |
- |
- |
1.2706 |
297 |
0.4684 |
- |
- |
- |
- |
- |
1.2749 |
298 |
1.197 |
- |
- |
- |
- |
- |
1.2791 |
299 |
0.3273 |
- |
- |
- |
- |
- |
1.2834 |
300 |
0.1804 |
- |
- |
- |
- |
- |
1.2877 |
301 |
0.5446 |
- |
- |
- |
- |
- |
1.2920 |
302 |
0.978 |
- |
- |
- |
- |
- |
1.2963 |
303 |
0.1825 |
- |
- |
- |
- |
- |
1.3005 |
304 |
0.8737 |
- |
- |
- |
- |
- |
1.3048 |
305 |
0.1771 |
- |
- |
- |
- |
- |
1.3091 |
306 |
0.1146 |
- |
- |
- |
- |
- |
1.3134 |
307 |
0.2057 |
- |
- |
- |
- |
- |
1.3176 |
308 |
0.7019 |
- |
- |
- |
- |
- |
1.3219 |
309 |
0.4566 |
- |
- |
- |
- |
- |
1.3262 |
310 |
0.5807 |
- |
- |
- |
- |
- |
1.3305 |
311 |
0.299 |
- |
- |
- |
- |
- |
1.3348 |
312 |
0.5087 |
- |
- |
- |
- |
- |
1.3390 |
313 |
0.4208 |
- |
- |
- |
- |
- |
1.3433 |
314 |
0.1847 |
- |
- |
- |
- |
- |
1.3476 |
315 |
0.5001 |
- |
- |
- |
- |
- |
1.3519 |
316 |
0.1688 |
- |
- |
- |
- |
- |
1.3561 |
317 |
0.2255 |
- |
- |
- |
- |
- |
1.3604 |
318 |
0.4908 |
- |
- |
- |
- |
- |
1.3647 |
319 |
0.1893 |
- |
- |
- |
- |
- |
1.3690 |
320 |
0.2928 |
- |
- |
- |
- |
- |
1.3733 |
321 |
0.1817 |
- |
- |
- |
- |
- |
1.3775 |
322 |
0.6634 |
- |
- |
- |
- |
- |
1.3818 |
323 |
0.9223 |
- |
- |
- |
- |
- |
1.3861 |
324 |
0.2463 |
- |
- |
- |
- |
- |
1.3904 |
325 |
0.3846 |
- |
- |
- |
- |
- |
1.3947 |
326 |
0.789 |
- |
- |
- |
- |
- |
1.3989 |
327 |
0.6919 |
- |
- |
- |
- |
- |
1.4032 |
328 |
0.3168 |
- |
- |
- |
- |
- |
1.4075 |
329 |
0.4332 |
- |
- |
- |
- |
- |
1.4118 |
330 |
0.9224 |
- |
- |
- |
- |
- |
1.4160 |
331 |
0.2678 |
- |
- |
- |
- |
- |
1.4203 |
332 |
0.2826 |
- |
- |
- |
- |
- |
1.4246 |
333 |
0.1273 |
- |
- |
- |
- |
- |
1.4289 |
334 |
0.3071 |
- |
- |
- |
- |
- |
1.4332 |
335 |
0.3195 |
- |
- |
- |
- |
- |
1.4374 |
336 |
0.3031 |
- |
- |
- |
- |
- |
1.4417 |
337 |
0.2312 |
- |
- |
- |
- |
- |
1.4460 |
338 |
0.0635 |
- |
- |
- |
- |
- |
1.4503 |
339 |
1.1888 |
- |
- |
- |
- |
- |
1.4545 |
340 |
0.3506 |
- |
- |
- |
- |
- |
1.4588 |
341 |
0.0363 |
- |
- |
- |
- |
- |
1.4631 |
342 |
0.2748 |
- |
- |
- |
- |
- |
1.4674 |
343 |
0.1862 |
- |
- |
- |
- |
- |
1.4717 |
344 |
0.1419 |
- |
- |
- |
- |
- |
1.4759 |
345 |
0.2381 |
- |
- |
- |
- |
- |
1.4802 |
346 |
0.0541 |
- |
- |
- |
- |
- |
1.4845 |
347 |
0.1185 |
- |
- |
- |
- |
- |
1.4888 |
348 |
0.4528 |
- |
- |
- |
- |
- |
1.4930 |
349 |
0.4922 |
- |
- |
- |
- |
- |
1.4973 |
350 |
0.1744 |
- |
- |
- |
- |
- |
1.5016 |
351 |
0.241 |
- |
- |
- |
- |
- |
1.5059 |
352 |
0.1481 |
- |
- |
- |
- |
- |
1.5102 |
353 |
0.3377 |
- |
- |
- |
- |
- |
1.5144 |
354 |
0.2208 |
- |
- |
- |
- |
- |
1.5187 |
355 |
0.054 |
- |
- |
- |
- |
- |
1.5230 |
356 |
0.1506 |
- |
- |
- |
- |
- |
1.5273 |
357 |
0.0794 |
- |
- |
- |
- |
- |
1.5316 |
358 |
0.1631 |
- |
- |
- |
- |
- |
1.5358 |
359 |
0.1571 |
- |
- |
- |
- |
- |
1.5401 |
360 |
0.2831 |
- |
- |
- |
- |
- |
1.5444 |
361 |
0.3486 |
- |
- |
- |
- |
- |
1.5487 |
362 |
0.6273 |
- |
- |
- |
- |
- |
1.5529 |
363 |
1.0274 |
- |
- |
- |
- |
- |
1.5572 |
364 |
0.269 |
- |
- |
- |
- |
- |
1.5615 |
365 |
0.1897 |
- |
- |
- |
- |
- |
1.5658 |
366 |
0.1987 |
- |
- |
- |
- |
- |
1.5701 |
367 |
0.1943 |
- |
- |
- |
- |
- |
1.5743 |
368 |
0.4424 |
- |
- |
- |
- |
- |
1.5786 |
369 |
0.0848 |
- |
- |
- |
- |
- |
1.5829 |
370 |
0.3504 |
- |
- |
- |
- |
- |
1.5872 |
371 |
0.1759 |
- |
- |
- |
- |
- |
1.5914 |
372 |
0.1168 |
- |
- |
- |
- |
- |
1.5957 |
373 |
0.0824 |
- |
- |
- |
- |
- |
1.6 |
374 |
0.2637 |
- |
- |
- |
- |
- |
1.6043 |
375 |
0.2454 |
- |
- |
- |
- |
- |
1.6086 |
376 |
0.1974 |
- |
- |
- |
- |
- |
1.6128 |
377 |
0.5961 |
- |
- |
- |
- |
- |
1.6171 |
378 |
1.0758 |
- |
- |
- |
- |
- |
1.6214 |
379 |
0.6134 |
- |
- |
- |
- |
- |
1.6257 |
380 |
0.3244 |
- |
- |
- |
- |
- |
1.6299 |
381 |
0.0201 |
- |
- |
- |
- |
- |
1.6342 |
382 |
0.1052 |
- |
- |
- |
- |
- |
1.6385 |
383 |
0.2025 |
- |
- |
- |
- |
- |
1.6428 |
384 |
0.9475 |
- |
- |
- |
- |
- |
1.6471 |
385 |
1.3788 |
- |
- |
- |
- |
- |
1.6513 |
386 |
0.4879 |
- |
- |
- |
- |
- |
1.6556 |
387 |
0.226 |
- |
- |
- |
- |
- |
1.6599 |
388 |
0.0576 |
- |
- |
- |
- |
- |
1.6642 |
389 |
0.4956 |
- |
- |
- |
- |
- |
1.6684 |
390 |
0.3145 |
- |
- |
- |
- |
- |
1.6727 |
391 |
0.5387 |
- |
- |
- |
- |
- |
1.6770 |
392 |
0.5391 |
- |
- |
- |
- |
- |
1.6813 |
393 |
0.6977 |
- |
- |
- |
- |
- |
1.6856 |
394 |
0.4331 |
- |
- |
- |
- |
- |
1.6898 |
395 |
0.6582 |
- |
- |
- |
- |
- |
1.6941 |
396 |
0.5774 |
- |
- |
- |
- |
- |
1.6984 |
397 |
0.1363 |
- |
- |
- |
- |
- |
1.7027 |
398 |
0.1877 |
- |
- |
- |
- |
- |
1.7070 |
399 |
0.3772 |
- |
- |
- |
- |
- |
1.7112 |
400 |
0.6645 |
- |
- |
- |
- |
- |
1.7155 |
401 |
0.8067 |
- |
- |
- |
- |
- |
1.7198 |
402 |
0.1889 |
- |
- |
- |
- |
- |
1.7241 |
403 |
0.3212 |
- |
- |
- |
- |
- |
1.7283 |
404 |
0.6867 |
- |
- |
- |
- |
- |
1.7326 |
405 |
0.228 |
- |
- |
- |
- |
- |
1.7369 |
406 |
0.4952 |
- |
- |
- |
- |
- |
1.7412 |
407 |
0.5718 |
- |
- |
- |
- |
- |
1.7455 |
408 |
0.2607 |
- |
- |
- |
- |
- |
1.7497 |
409 |
0.3326 |
- |
- |
- |
- |
- |
1.7540 |
410 |
0.5813 |
- |
- |
- |
- |
- |
1.7583 |
411 |
0.8952 |
- |
- |
- |
- |
- |
1.7626 |
412 |
0.0735 |
- |
- |
- |
- |
- |
1.7668 |
413 |
0.1031 |
- |
- |
- |
- |
- |
1.7711 |
414 |
0.0321 |
- |
- |
- |
- |
- |
1.7754 |
415 |
0.0909 |
- |
- |
- |
- |
- |
1.7797 |
416 |
0.4591 |
- |
- |
- |
- |
- |
1.7840 |
417 |
0.2188 |
- |
- |
- |
- |
- |
1.7882 |
418 |
0.1857 |
- |
- |
- |
- |
- |
1.7925 |
419 |
0.4137 |
- |
- |
- |
- |
- |
1.7968 |
420 |
0.0631 |
- |
- |
- |
- |
- |
1.8011 |
421 |
0.3535 |
- |
- |
- |
- |
- |
1.8053 |
422 |
0.467 |
- |
- |
- |
- |
- |
1.8096 |
423 |
0.0427 |
- |
- |
- |
- |
- |
1.8139 |
424 |
0.7846 |
- |
- |
- |
- |
- |
1.8182 |
425 |
0.8365 |
- |
- |
- |
- |
- |
1.8225 |
426 |
0.1746 |
- |
- |
- |
- |
- |
1.8267 |
427 |
0.3084 |
- |
- |
- |
- |
- |
1.8310 |
428 |
0.0457 |
- |
- |
- |
- |
- |
1.8353 |
429 |
0.108 |
- |
- |
- |
- |
- |
1.8396 |
430 |
0.5707 |
- |
- |
- |
- |
- |
1.8439 |
431 |
0.2809 |
- |
- |
- |
- |
- |
1.8481 |
432 |
0.162 |
- |
- |
- |
- |
- |
1.8524 |
433 |
0.3929 |
- |
- |
- |
- |
- |
1.8567 |
434 |
0.2679 |
- |
- |
- |
- |
- |
1.8610 |
435 |
0.4651 |
- |
- |
- |
- |
- |
1.8652 |
436 |
0.3847 |
- |
- |
- |
- |
- |
1.8695 |
437 |
0.3955 |
- |
- |
- |
- |
- |
1.8738 |
438 |
0.2116 |
- |
- |
- |
- |
- |
1.8781 |
439 |
0.7634 |
- |
- |
- |
- |
- |
1.8824 |
440 |
0.1442 |
- |
- |
- |
- |
- |
1.8866 |
441 |
0.0805 |
- |
- |
- |
- |
- |
1.8909 |
442 |
0.0605 |
- |
- |
- |
- |
- |
1.8952 |
443 |
0.1937 |
- |
- |
- |
- |
- |
1.8995 |
444 |
0.1044 |
- |
- |
- |
- |
- |
1.9037 |
445 |
0.5122 |
- |
- |
- |
- |
- |
1.9080 |
446 |
0.1195 |
- |
- |
- |
- |
- |
1.9123 |
447 |
0.1904 |
- |
- |
- |
- |
- |
1.9166 |
448 |
0.2764 |
- |
- |
- |
- |
- |
1.9209 |
449 |
0.5287 |
- |
- |
- |
- |
- |
1.9251 |
450 |
0.1051 |
- |
- |
- |
- |
- |
1.9294 |
451 |
0.1825 |
- |
- |
- |
- |
- |
1.9337 |
452 |
0.0838 |
- |
- |
- |
- |
- |
1.9380 |
453 |
0.0739 |
- |
- |
- |
- |
- |
1.9422 |
454 |
0.0988 |
- |
- |
- |
- |
- |
1.9465 |
455 |
0.2542 |
- |
- |
- |
- |
- |
1.9508 |
456 |
0.1043 |
- |
- |
- |
- |
- |
1.9551 |
457 |
0.4259 |
- |
- |
- |
- |
- |
1.9594 |
458 |
0.1923 |
- |
- |
- |
- |
- |
1.9636 |
459 |
0.2651 |
- |
- |
- |
- |
- |
1.9679 |
460 |
0.0533 |
- |
- |
- |
- |
- |
1.9722 |
461 |
0.2306 |
- |
- |
- |
- |
- |
1.9765 |
462 |
0.168 |
- |
- |
- |
- |
- |
1.9807 |
463 |
0.3181 |
- |
- |
- |
- |
- |
1.9850 |
464 |
0.042 |
- |
- |
- |
- |
- |
1.9893 |
465 |
0.0833 |
- |
- |
- |
- |
- |
1.9936 |
466 |
0.2425 |
- |
- |
- |
- |
- |
1.9979 |
467 |
0.7451 |
0.3624 |
0.3819 |
0.3987 |
0.3061 |
0.3968 |
2.0021 |
468 |
0.1784 |
- |
- |
- |
- |
- |
2.0064 |
469 |
0.2073 |
- |
- |
- |
- |
- |
2.0107 |
470 |
0.211 |
- |
- |
- |
- |
- |
2.0150 |
471 |
0.0456 |
- |
- |
- |
- |
- |
2.0193 |
472 |
0.1354 |
- |
- |
- |
- |
- |
2.0235 |
473 |
0.1245 |
- |
- |
- |
- |
- |
2.0278 |
474 |
0.0861 |
- |
- |
- |
- |
- |
2.0321 |
475 |
0.0397 |
- |
- |
- |
- |
- |
2.0364 |
476 |
0.0925 |
- |
- |
- |
- |
- |
2.0406 |
477 |
0.0652 |
- |
- |
- |
- |
- |
2.0449 |
478 |
0.4905 |
- |
- |
- |
- |
- |
2.0492 |
479 |
0.1338 |
- |
- |
- |
- |
- |
2.0535 |
480 |
0.0463 |
- |
- |
- |
- |
- |
2.0578 |
481 |
0.1399 |
- |
- |
- |
- |
- |
2.0620 |
482 |
0.0192 |
- |
- |
- |
- |
- |
2.0663 |
483 |
0.1343 |
- |
- |
- |
- |
- |
2.0706 |
484 |
0.1027 |
- |
- |
- |
- |
- |
2.0749 |
485 |
0.1746 |
- |
- |
- |
- |
- |
2.0791 |
486 |
0.584 |
- |
- |
- |
- |
- |
2.0834 |
487 |
0.2704 |
- |
- |
- |
- |
- |
2.0877 |
488 |
0.3391 |
- |
- |
- |
- |
- |
2.0920 |
489 |
0.0892 |
- |
- |
- |
- |
- |
2.0963 |
490 |
0.1273 |
- |
- |
- |
- |
- |
2.1005 |
491 |
0.0644 |
- |
- |
- |
- |
- |
2.1048 |
492 |
0.2457 |
- |
- |
- |
- |
- |
2.1091 |
493 |
0.147 |
- |
- |
- |
- |
- |
2.1134 |
494 |
0.2746 |
- |
- |
- |
- |
- |
2.1176 |
495 |
0.1425 |
- |
- |
- |
- |
- |
2.1219 |
496 |
0.198 |
- |
- |
- |
- |
- |
2.1262 |
497 |
0.1079 |
- |
- |
- |
- |
- |
2.1305 |
498 |
0.0583 |
- |
- |
- |
- |
- |
2.1348 |
499 |
0.0646 |
- |
- |
- |
- |
- |
2.1390 |
500 |
0.1751 |
- |
- |
- |
- |
- |
2.1433 |
501 |
0.2996 |
- |
- |
- |
- |
- |
2.1476 |
502 |
0.1059 |
- |
- |
- |
- |
- |
2.1519 |
503 |
0.162 |
- |
- |
- |
- |
- |
2.1561 |
504 |
0.1426 |
- |
- |
- |
- |
- |
2.1604 |
505 |
0.4076 |
- |
- |
- |
- |
- |
2.1647 |
506 |
0.0968 |
- |
- |
- |
- |
- |
2.1690 |
507 |
0.0867 |
- |
- |
- |
- |
- |
2.1733 |
508 |
0.0713 |
- |
- |
- |
- |
- |
2.1775 |
509 |
0.2186 |
- |
- |
- |
- |
- |
2.1818 |
510 |
0.099 |
- |
- |
- |
- |
- |
2.1861 |
511 |
0.1216 |
- |
- |
- |
- |
- |
2.1904 |
512 |
0.3812 |
- |
- |
- |
- |
- |
2.1947 |
513 |
0.1481 |
- |
- |
- |
- |
- |
2.1989 |
514 |
0.1637 |
- |
- |
- |
- |
- |
2.2032 |
515 |
0.1068 |
- |
- |
- |
- |
- |
2.2075 |
516 |
0.1002 |
- |
- |
- |
- |
- |
2.2118 |
517 |
0.2612 |
- |
- |
- |
- |
- |
2.2160 |
518 |
0.1599 |
- |
- |
- |
- |
- |
2.2203 |
519 |
0.0513 |
- |
- |
- |
- |
- |
2.2246 |
520 |
0.1409 |
- |
- |
- |
- |
- |
2.2289 |
521 |
0.0171 |
- |
- |
- |
- |
- |
2.2332 |
522 |
0.059 |
- |
- |
- |
- |
- |
2.2374 |
523 |
0.2391 |
- |
- |
- |
- |
- |
2.2417 |
524 |
0.2119 |
- |
- |
- |
- |
- |
2.2460 |
525 |
0.1562 |
- |
- |
- |
- |
- |
2.2503 |
526 |
0.3576 |
- |
- |
- |
- |
- |
2.2545 |
527 |
0.3094 |
- |
- |
- |
- |
- |
2.2588 |
528 |
0.0472 |
- |
- |
- |
- |
- |
2.2631 |
529 |
0.1259 |
- |
- |
- |
- |
- |
2.2674 |
530 |
0.0282 |
- |
- |
- |
- |
- |
2.2717 |
531 |
0.5926 |
- |
- |
- |
- |
- |
2.2759 |
532 |
0.1211 |
- |
- |
- |
- |
- |
2.2802 |
533 |
0.0334 |
- |
- |
- |
- |
- |
2.2845 |
534 |
0.0233 |
- |
- |
- |
- |
- |
2.2888 |
535 |
0.0937 |
- |
- |
- |
- |
- |
2.2930 |
536 |
0.0868 |
- |
- |
- |
- |
- |
2.2973 |
537 |
0.0235 |
- |
- |
- |
- |
- |
2.3016 |
538 |
0.1052 |
- |
- |
- |
- |
- |
2.3059 |
539 |
0.0276 |
- |
- |
- |
- |
- |
2.3102 |
540 |
0.0682 |
- |
- |
- |
- |
- |
2.3144 |
541 |
0.0945 |
- |
- |
- |
- |
- |
2.3187 |
542 |
0.0401 |
- |
- |
- |
- |
- |
2.3230 |
543 |
0.0883 |
- |
- |
- |
- |
- |
2.3273 |
544 |
0.0358 |
- |
- |
- |
- |
- |
2.3316 |
545 |
0.0498 |
- |
- |
- |
- |
- |
2.3358 |
546 |
0.0238 |
- |
- |
- |
- |
- |
2.3401 |
547 |
0.2935 |
- |
- |
- |
- |
- |
2.3444 |
548 |
0.0459 |
- |
- |
- |
- |
- |
2.3487 |
549 |
0.0473 |
- |
- |
- |
- |
- |
2.3529 |
550 |
0.1763 |
- |
- |
- |
- |
- |
2.3572 |
551 |
0.125 |
- |
- |
- |
- |
- |
2.3615 |
552 |
0.1579 |
- |
- |
- |
- |
- |
2.3658 |
553 |
0.0526 |
- |
- |
- |
- |
- |
2.3701 |
554 |
0.0522 |
- |
- |
- |
- |
- |
2.3743 |
555 |
0.2429 |
- |
- |
- |
- |
- |
2.3786 |
556 |
0.097 |
- |
- |
- |
- |
- |
2.3829 |
557 |
0.1971 |
- |
- |
- |
- |
- |
2.3872 |
558 |
0.0722 |
- |
- |
- |
- |
- |
2.3914 |
559 |
0.3371 |
- |
- |
- |
- |
- |
2.3957 |
560 |
0.4065 |
- |
- |
- |
- |
- |
2.4 |
561 |
0.8116 |
- |
- |
- |
- |
- |
2.4043 |
562 |
0.0576 |
- |
- |
- |
- |
- |
2.4086 |
563 |
0.1228 |
- |
- |
- |
- |
- |
2.4128 |
564 |
0.3299 |
- |
- |
- |
- |
- |
2.4171 |
565 |
0.3528 |
- |
- |
- |
- |
- |
2.4214 |
566 |
0.0664 |
- |
- |
- |
- |
- |
2.4257 |
567 |
0.0782 |
- |
- |
- |
- |
- |
2.4299 |
568 |
0.0353 |
- |
- |
- |
- |
- |
2.4342 |
569 |
0.0786 |
- |
- |
- |
- |
- |
2.4385 |
570 |
0.179 |
- |
- |
- |
- |
- |
2.4428 |
571 |
0.0167 |
- |
- |
- |
- |
- |
2.4471 |
572 |
0.0309 |
- |
- |
- |
- |
- |
2.4513 |
573 |
0.2699 |
- |
- |
- |
- |
- |
2.4556 |
574 |
0.0223 |
- |
- |
- |
- |
- |
2.4599 |
575 |
0.0062 |
- |
- |
- |
- |
- |
2.4642 |
576 |
0.0825 |
- |
- |
- |
- |
- |
2.4684 |
577 |
0.1334 |
- |
- |
- |
- |
- |
2.4727 |
578 |
0.0161 |
- |
- |
- |
- |
- |
2.4770 |
579 |
0.0136 |
- |
- |
- |
- |
- |
2.4813 |
580 |
0.0477 |
- |
- |
- |
- |
- |
2.4856 |
581 |
0.0869 |
- |
- |
- |
- |
- |
2.4898 |
582 |
0.0569 |
- |
- |
- |
- |
- |
2.4941 |
583 |
0.1039 |
- |
- |
- |
- |
- |
2.4984 |
584 |
0.0891 |
- |
- |
- |
- |
- |
2.5027 |
585 |
0.0251 |
- |
- |
- |
- |
- |
2.5070 |
586 |
0.0532 |
- |
- |
- |
- |
- |
2.5112 |
587 |
0.0665 |
- |
- |
- |
- |
- |
2.5155 |
588 |
0.0361 |
- |
- |
- |
- |
- |
2.5198 |
589 |
0.0126 |
- |
- |
- |
- |
- |
2.5241 |
590 |
0.0614 |
- |
- |
- |
- |
- |
2.5283 |
591 |
0.0584 |
- |
- |
- |
- |
- |
2.5326 |
592 |
0.0137 |
- |
- |
- |
- |
- |
2.5369 |
593 |
0.1374 |
- |
- |
- |
- |
- |
2.5412 |
594 |
0.0723 |
- |
- |
- |
- |
- |
2.5455 |
595 |
0.0739 |
- |
- |
- |
- |
- |
2.5497 |
596 |
0.388 |
- |
- |
- |
- |
- |
2.5540 |
597 |
0.201 |
- |
- |
- |
- |
- |
2.5583 |
598 |
0.0377 |
- |
- |
- |
- |
- |
2.5626 |
599 |
0.0653 |
- |
- |
- |
- |
- |
2.5668 |
600 |
0.0748 |
- |
- |
- |
- |
- |
2.5711 |
601 |
0.0246 |
- |
- |
- |
- |
- |
2.5754 |
602 |
0.0277 |
- |
- |
- |
- |
- |
2.5797 |
603 |
0.0216 |
- |
- |
- |
- |
- |
2.5840 |
604 |
0.0996 |
- |
- |
- |
- |
- |
2.5882 |
605 |
0.1079 |
- |
- |
- |
- |
- |
2.5925 |
606 |
0.0388 |
- |
- |
- |
- |
- |
2.5968 |
607 |
0.0196 |
- |
- |
- |
- |
- |
2.6011 |
608 |
0.051 |
- |
- |
- |
- |
- |
2.6053 |
609 |
0.2019 |
- |
- |
- |
- |
- |
2.6096 |
610 |
0.0523 |
- |
- |
- |
- |
- |
2.6139 |
611 |
0.2106 |
- |
- |
- |
- |
- |
2.6182 |
612 |
0.0803 |
- |
- |
- |
- |
- |
2.6225 |
613 |
0.1198 |
- |
- |
- |
- |
- |
2.6267 |
614 |
0.0261 |
- |
- |
- |
- |
- |
2.6310 |
615 |
0.006 |
- |
- |
- |
- |
- |
2.6353 |
616 |
0.0124 |
- |
- |
- |
- |
- |
2.6396 |
617 |
0.0184 |
- |
- |
- |
- |
- |
2.6439 |
618 |
0.0586 |
- |
- |
- |
- |
- |
2.6481 |
619 |
0.2706 |
- |
- |
- |
- |
- |
2.6524 |
620 |
0.1514 |
- |
- |
- |
- |
- |
2.6567 |
621 |
0.0402 |
- |
- |
- |
- |
- |
2.6610 |
622 |
0.0213 |
- |
- |
- |
- |
- |
2.6652 |
623 |
0.0633 |
- |
- |
- |
- |
- |
2.6695 |
624 |
0.1043 |
- |
- |
- |
- |
- |
2.6738 |
625 |
0.0199 |
- |
- |
- |
- |
- |
2.6781 |
626 |
0.1759 |
- |
- |
- |
- |
- |
2.6824 |
627 |
0.1978 |
- |
- |
- |
- |
- |
2.6866 |
628 |
0.1043 |
- |
- |
- |
- |
- |
2.6909 |
629 |
0.1454 |
- |
- |
- |
- |
- |
2.6952 |
630 |
0.0462 |
- |
- |
- |
- |
- |
2.6995 |
631 |
0.0308 |
- |
- |
- |
- |
- |
2.7037 |
632 |
0.0379 |
- |
- |
- |
- |
- |
2.7080 |
633 |
0.3084 |
- |
- |
- |
- |
- |
2.7123 |
634 |
0.1094 |
- |
- |
- |
- |
- |
2.7166 |
635 |
0.1527 |
- |
- |
- |
- |
- |
2.7209 |
636 |
0.1717 |
- |
- |
- |
- |
- |
2.7251 |
637 |
0.4347 |
- |
- |
- |
- |
- |
2.7294 |
638 |
0.128 |
- |
- |
- |
- |
- |
2.7337 |
639 |
0.0658 |
- |
- |
- |
- |
- |
2.7380 |
640 |
0.1678 |
- |
- |
- |
- |
- |
2.7422 |
641 |
0.0508 |
- |
- |
- |
- |
- |
2.7465 |
642 |
0.0797 |
- |
- |
- |
- |
- |
2.7508 |
643 |
0.081 |
- |
- |
- |
- |
- |
2.7551 |
644 |
0.1065 |
- |
- |
- |
- |
- |
2.7594 |
645 |
0.1165 |
- |
- |
- |
- |
- |
2.7636 |
646 |
0.0127 |
- |
- |
- |
- |
- |
2.7679 |
647 |
0.0789 |
- |
- |
- |
- |
- |
2.7722 |
648 |
0.0042 |
- |
- |
- |
- |
- |
2.7765 |
649 |
0.014 |
- |
- |
- |
- |
- |
2.7807 |
650 |
0.0638 |
- |
- |
- |
- |
- |
2.7850 |
651 |
0.0376 |
- |
- |
- |
- |
- |
2.7893 |
652 |
0.2348 |
- |
- |
- |
- |
- |
2.7936 |
653 |
0.0505 |
- |
- |
- |
- |
- |
2.7979 |
654 |
0.0194 |
- |
- |
- |
- |
- |
2.8021 |
655 |
0.0507 |
- |
- |
- |
- |
- |
2.8064 |
656 |
0.0825 |
- |
- |
- |
- |
- |
2.8107 |
657 |
0.0156 |
- |
- |
- |
- |
- |
2.8150 |
658 |
0.4371 |
- |
- |
- |
- |
- |
2.8193 |
659 |
0.2948 |
- |
- |
- |
- |
- |
2.8235 |
660 |
0.1324 |
- |
- |
- |
- |
- |
2.8278 |
661 |
0.15 |
- |
- |
- |
- |
- |
2.8321 |
662 |
0.0283 |
- |
- |
- |
- |
- |
2.8364 |
663 |
0.0408 |
- |
- |
- |
- |
- |
2.8406 |
664 |
0.0615 |
- |
- |
- |
- |
- |
2.8449 |
665 |
0.0191 |
- |
- |
- |
- |
- |
2.8492 |
666 |
0.0412 |
- |
- |
- |
- |
- |
2.8535 |
667 |
0.0772 |
- |
- |
- |
- |
- |
2.8578 |
668 |
0.1798 |
- |
- |
- |
- |
- |
2.8620 |
669 |
0.1172 |
- |
- |
- |
- |
- |
2.8663 |
670 |
0.018 |
- |
- |
- |
- |
- |
2.8706 |
671 |
0.0386 |
- |
- |
- |
- |
- |
2.8749 |
672 |
0.1195 |
- |
- |
- |
- |
- |
2.8791 |
673 |
0.0948 |
- |
- |
- |
- |
- |
2.8834 |
674 |
0.0271 |
- |
- |
- |
- |
- |
2.8877 |
675 |
0.0237 |
- |
- |
- |
- |
- |
2.8920 |
676 |
0.0149 |
- |
- |
- |
- |
- |
2.8963 |
677 |
0.0405 |
- |
- |
- |
- |
- |
2.9005 |
678 |
0.0126 |
- |
- |
- |
- |
- |
2.9048 |
679 |
0.0261 |
- |
- |
- |
- |
- |
2.9091 |
680 |
0.0418 |
- |
- |
- |
- |
- |
2.9134 |
681 |
0.0742 |
- |
- |
- |
- |
- |
2.9176 |
682 |
0.0708 |
- |
- |
- |
- |
- |
2.9219 |
683 |
0.1017 |
- |
- |
- |
- |
- |
2.9262 |
684 |
0.0161 |
- |
- |
- |
- |
- |
2.9305 |
685 |
0.0664 |
- |
- |
- |
- |
- |
2.9348 |
686 |
0.0127 |
- |
- |
- |
- |
- |
2.9390 |
687 |
0.0371 |
- |
- |
- |
- |
- |
2.9433 |
688 |
0.0231 |
- |
- |
- |
- |
- |
2.9476 |
689 |
0.0621 |
- |
- |
- |
- |
- |
2.9519 |
690 |
0.1051 |
- |
- |
- |
- |
- |
2.9561 |
691 |
0.4462 |
- |
- |
- |
- |
- |
2.9604 |
692 |
0.1279 |
- |
- |
- |
- |
- |
2.9647 |
693 |
0.0166 |
- |
- |
- |
- |
- |
2.9690 |
694 |
0.0282 |
- |
- |
- |
- |
- |
2.9733 |
695 |
0.014 |
- |
- |
- |
- |
- |
2.9775 |
696 |
0.0428 |
- |
- |
- |
- |
- |
2.9818 |
697 |
0.0319 |
- |
- |
- |
- |
- |
2.9861 |
698 |
0.0031 |
- |
- |
- |
- |
- |
2.9904 |
699 |
0.1171 |
- |
- |
- |
- |
- |
2.9947 |
700 |
0.1301 |
- |
- |
- |
- |
- |
2.9989 |
701 |
0.085 |
0.3525 |
0.3812 |
0.3888 |
0.3093 |
0.3923 |
3.0032 |
702 |
0.16 |
- |
- |
- |
- |
- |
3.0075 |
703 |
0.0331 |
- |
- |
- |
- |
- |
3.0118 |
704 |
0.0278 |
- |
- |
- |
- |
- |
3.0160 |
705 |
0.0283 |
- |
- |
- |
- |
- |
3.0203 |
706 |
0.0247 |
- |
- |
- |
- |
- |
3.0246 |
707 |
0.055 |
- |
- |
- |
- |
- |
3.0289 |
708 |
0.1062 |
- |
- |
- |
- |
- |
3.0332 |
709 |
0.0207 |
- |
- |
- |
- |
- |
3.0374 |
710 |
0.0314 |
- |
- |
- |
- |
- |
3.0417 |
711 |
0.0203 |
- |
- |
- |
- |
- |
3.0460 |
712 |
0.1106 |
- |
- |
- |
- |
- |
3.0503 |
713 |
0.0252 |
- |
- |
- |
- |
- |
3.0545 |
714 |
0.0486 |
- |
- |
- |
- |
- |
3.0588 |
715 |
0.0173 |
- |
- |
- |
- |
- |
3.0631 |
716 |
0.0147 |
- |
- |
- |
- |
- |
3.0674 |
717 |
0.0444 |
- |
- |
- |
- |
- |
3.0717 |
718 |
0.0718 |
- |
- |
- |
- |
- |
3.0759 |
719 |
0.0145 |
- |
- |
- |
- |
- |
3.0802 |
720 |
0.2057 |
- |
- |
- |
- |
- |
3.0845 |
721 |
0.0386 |
- |
- |
- |
- |
- |
3.0888 |
722 |
0.0349 |
- |
- |
- |
- |
- |
3.0930 |
723 |
0.0248 |
- |
- |
- |
- |
- |
3.0973 |
724 |
0.0276 |
- |
- |
- |
- |
- |
3.1016 |
725 |
0.0186 |
- |
- |
- |
- |
- |
3.1059 |
726 |
0.1112 |
- |
- |
- |
- |
- |
3.1102 |
727 |
0.0437 |
- |
- |
- |
- |
- |
3.1144 |
728 |
0.0185 |
- |
- |
- |
- |
- |
3.1187 |
729 |
0.0896 |
- |
- |
- |
- |
- |
3.1230 |
730 |
0.2015 |
- |
- |
- |
- |
- |
3.1273 |
731 |
0.0247 |
- |
- |
- |
- |
- |
3.1316 |
732 |
0.0096 |
- |
- |
- |
- |
- |
3.1358 |
733 |
0.0114 |
- |
- |
- |
- |
- |
3.1401 |
734 |
0.1263 |
- |
- |
- |
- |
- |
3.1444 |
735 |
0.0718 |
- |
- |
- |
- |
- |
3.1487 |
736 |
0.0101 |
- |
- |
- |
- |
- |
3.1529 |
737 |
0.125 |
- |
- |
- |
- |
- |
3.1572 |
738 |
0.0931 |
- |
- |
- |
- |
- |
3.1615 |
739 |
0.193 |
- |
- |
- |
- |
- |
3.1658 |
740 |
0.0121 |
- |
- |
- |
- |
- |
3.1701 |
741 |
0.0264 |
- |
- |
- |
- |
- |
3.1743 |
742 |
0.094 |
- |
- |
- |
- |
- |
3.1786 |
743 |
0.0835 |
- |
- |
- |
- |
- |
3.1829 |
744 |
0.031 |
- |
- |
- |
- |
- |
3.1872 |
745 |
0.0297 |
- |
- |
- |
- |
- |
3.1914 |
746 |
0.0416 |
- |
- |
- |
- |
- |
3.1957 |
747 |
0.0173 |
- |
- |
- |
- |
- |
3.2 |
748 |
0.0088 |
- |
- |
- |
- |
- |
3.2043 |
749 |
0.0235 |
- |
- |
- |
- |
- |
3.2086 |
750 |
0.0715 |
- |
- |
- |
- |
- |
3.2128 |
751 |
0.1977 |
- |
- |
- |
- |
- |
3.2171 |
752 |
0.0217 |
- |
- |
- |
- |
- |
3.2214 |
753 |
0.01 |
- |
- |
- |
- |
- |
3.2257 |
754 |
0.016 |
- |
- |
- |
- |
- |
3.2299 |
755 |
0.0116 |
- |
- |
- |
- |
- |
3.2342 |
756 |
0.0662 |
- |
- |
- |
- |
- |
3.2385 |
757 |
0.0783 |
- |
- |
- |
- |
- |
3.2428 |
758 |
0.0814 |
- |
- |
- |
- |
- |
3.2471 |
759 |
0.0391 |
- |
- |
- |
- |
- |
3.2513 |
760 |
0.0329 |
- |
- |
- |
- |
- |
3.2556 |
761 |
0.0238 |
- |
- |
- |
- |
- |
3.2599 |
762 |
0.0124 |
- |
- |
- |
- |
- |
3.2642 |
763 |
0.0529 |
- |
- |
- |
- |
- |
3.2684 |
764 |
0.0735 |
- |
- |
- |
- |
- |
3.2727 |
765 |
0.0444 |
- |
- |
- |
- |
- |
3.2770 |
766 |
0.0489 |
- |
- |
- |
- |
- |
3.2813 |
767 |
0.0074 |
- |
- |
- |
- |
- |
3.2856 |
768 |
0.0149 |
- |
- |
- |
- |
- |
3.2898 |
769 |
0.0147 |
- |
- |
- |
- |
- |
3.2941 |
770 |
0.0235 |
- |
- |
- |
- |
- |
3.2984 |
771 |
0.0224 |
- |
- |
- |
- |
- |
3.3027 |
772 |
0.0231 |
- |
- |
- |
- |
- |
3.3070 |
773 |
0.0049 |
- |
- |
- |
- |
- |
3.3112 |
774 |
0.0166 |
- |
- |
- |
- |
- |
3.3155 |
775 |
0.0259 |
- |
- |
- |
- |
- |
3.3198 |
776 |
0.0373 |
- |
- |
- |
- |
- |
3.3241 |
777 |
0.133 |
- |
- |
- |
- |
- |
3.3283 |
778 |
0.0141 |
- |
- |
- |
- |
- |
3.3326 |
779 |
0.0145 |
- |
- |
- |
- |
- |
3.3369 |
780 |
0.0129 |
- |
- |
- |
- |
- |
3.3412 |
781 |
0.0467 |
- |
- |
- |
- |
- |
3.3455 |
782 |
0.0113 |
- |
- |
- |
- |
- |
3.3497 |
783 |
0.0524 |
- |
- |
- |
- |
- |
3.3540 |
784 |
0.0325 |
- |
- |
- |
- |
- |
3.3583 |
785 |
0.0774 |
- |
- |
- |
- |
- |
3.3626 |
786 |
0.148 |
- |
- |
- |
- |
- |
3.3668 |
787 |
0.0173 |
- |
- |
- |
- |
- |
3.3711 |
788 |
0.0112 |
- |
- |
- |
- |
- |
3.3754 |
789 |
0.0314 |
- |
- |
- |
- |
- |
3.3797 |
790 |
0.0487 |
- |
- |
- |
- |
- |
3.3840 |
791 |
0.0683 |
- |
- |
- |
- |
- |
3.3882 |
792 |
0.0063 |
- |
- |
- |
- |
- |
3.3925 |
793 |
0.0427 |
- |
- |
- |
- |
- |
3.3968 |
794 |
0.0549 |
- |
- |
- |
- |
- |
3.4011 |
795 |
0.0452 |
- |
- |
- |
- |
- |
3.4053 |
796 |
0.0453 |
- |
- |
- |
- |
- |
3.4096 |
797 |
0.0527 |
- |
- |
- |
- |
- |
3.4139 |
798 |
0.234 |
- |
- |
- |
- |
- |
3.4182 |
799 |
0.0263 |
- |
- |
- |
- |
- |
3.4225 |
800 |
0.022 |
- |
- |
- |
- |
- |
3.4267 |
801 |
0.0374 |
- |
- |
- |
- |
- |
3.4310 |
802 |
0.0139 |
- |
- |
- |
- |
- |
3.4353 |
803 |
0.0134 |
- |
- |
- |
- |
- |
3.4396 |
804 |
0.0286 |
- |
- |
- |
- |
- |
3.4439 |
805 |
0.0021 |
- |
- |
- |
- |
- |
3.4481 |
806 |
0.051 |
- |
- |
- |
- |
- |
3.4524 |
807 |
0.2649 |
- |
- |
- |
- |
- |
3.4567 |
808 |
0.0032 |
- |
- |
- |
- |
- |
3.4610 |
809 |
0.0228 |
- |
- |
- |
- |
- |
3.4652 |
810 |
0.0163 |
- |
- |
- |
- |
- |
3.4695 |
811 |
0.0121 |
- |
- |
- |
- |
- |
3.4738 |
812 |
0.0033 |
- |
- |
- |
- |
- |
3.4781 |
813 |
0.0067 |
- |
- |
- |
- |
- |
3.4824 |
814 |
0.0122 |
- |
- |
- |
- |
- |
3.4866 |
815 |
0.0292 |
- |
- |
- |
- |
- |
3.4909 |
816 |
0.0488 |
- |
- |
- |
- |
- |
3.4952 |
817 |
0.025 |
- |
- |
- |
- |
- |
3.4995 |
818 |
0.014 |
- |
- |
- |
- |
- |
3.5037 |
819 |
0.0169 |
- |
- |
- |
- |
- |
3.5080 |
820 |
0.0277 |
- |
- |
- |
- |
- |
3.5123 |
821 |
0.022 |
- |
- |
- |
- |
- |
3.5166 |
822 |
0.0187 |
- |
- |
- |
- |
- |
3.5209 |
823 |
0.0178 |
- |
- |
- |
- |
- |
3.5251 |
824 |
0.0265 |
- |
- |
- |
- |
- |
3.5294 |
825 |
0.0063 |
- |
- |
- |
- |
- |
3.5337 |
826 |
0.0154 |
- |
- |
- |
- |
- |
3.5380 |
827 |
0.0489 |
- |
- |
- |
- |
- |
3.5422 |
828 |
0.029 |
- |
- |
- |
- |
- |
3.5465 |
829 |
0.0496 |
- |
- |
- |
- |
- |
3.5508 |
830 |
0.2485 |
- |
- |
- |
- |
- |
3.5551 |
831 |
0.0394 |
- |
- |
- |
- |
- |
3.5594 |
832 |
0.0294 |
- |
- |
- |
- |
- |
3.5636 |
833 |
0.0262 |
- |
- |
- |
- |
- |
3.5679 |
834 |
0.0368 |
- |
- |
- |
- |
- |
3.5722 |
835 |
0.0163 |
- |
- |
- |
- |
- |
3.5765 |
836 |
0.0167 |
- |
- |
- |
- |
- |
3.5807 |
837 |
0.01 |
- |
- |
- |
- |
- |
3.5850 |
838 |
0.0179 |
- |
- |
- |
- |
- |
3.5893 |
839 |
0.0493 |
- |
- |
- |
- |
- |
3.5936 |
840 |
0.0082 |
- |
- |
- |
- |
- |
3.5979 |
841 |
0.0109 |
- |
- |
- |
- |
- |
3.6021 |
842 |
0.0155 |
- |
- |
- |
- |
- |
3.6064 |
843 |
0.0117 |
- |
- |
- |
- |
- |
3.6107 |
844 |
0.0245 |
- |
- |
- |
- |
- |
3.6150 |
845 |
0.0306 |
- |
- |
- |
- |
- |
3.6193 |
846 |
0.0529 |
- |
- |
- |
- |
- |
3.6235 |
847 |
0.0731 |
- |
- |
- |
- |
- |
3.6278 |
848 |
0.0427 |
- |
- |
- |
- |
- |
3.6321 |
849 |
0.0039 |
- |
- |
- |
- |
- |
3.6364 |
850 |
0.0031 |
- |
- |
- |
- |
- |
3.6406 |
851 |
0.0151 |
- |
- |
- |
- |
- |
3.6449 |
852 |
0.107 |
- |
- |
- |
- |
- |
3.6492 |
853 |
0.1507 |
- |
- |
- |
- |
- |
3.6535 |
854 |
0.0314 |
- |
- |
- |
- |
- |
3.6578 |
855 |
0.0204 |
- |
- |
- |
- |
- |
3.6620 |
856 |
0.0212 |
- |
- |
- |
- |
- |
3.6663 |
857 |
0.0351 |
- |
- |
- |
- |
- |
3.6706 |
858 |
0.0388 |
- |
- |
- |
- |
- |
3.6749 |
859 |
0.0104 |
- |
- |
- |
- |
- |
3.6791 |
860 |
0.0386 |
- |
- |
- |
- |
- |
3.6834 |
861 |
0.0914 |
- |
- |
- |
- |
- |
3.6877 |
862 |
0.0557 |
- |
- |
- |
- |
- |
3.6920 |
863 |
0.021 |
- |
- |
- |
- |
- |
3.6963 |
864 |
0.0176 |
- |
- |
- |
- |
- |
3.7005 |
865 |
0.0064 |
- |
- |
- |
- |
- |
3.7048 |
866 |
0.0292 |
- |
- |
- |
- |
- |
3.7091 |
867 |
0.0663 |
- |
- |
- |
- |
- |
3.7134 |
868 |
0.0363 |
- |
- |
- |
- |
- |
3.7176 |
869 |
0.0759 |
- |
- |
- |
- |
- |
3.7219 |
870 |
0.0693 |
- |
- |
- |
- |
- |
3.7262 |
871 |
0.0369 |
- |
- |
- |
- |
- |
3.7305 |
872 |
0.0396 |
- |
- |
- |
- |
- |
3.7348 |
873 |
0.0389 |
- |
- |
- |
- |
- |
3.7390 |
874 |
0.0331 |
- |
- |
- |
- |
- |
3.7433 |
875 |
0.0344 |
- |
- |
- |
- |
- |
3.7476 |
876 |
0.0155 |
- |
- |
- |
- |
- |
3.7519 |
877 |
0.0213 |
- |
- |
- |
- |
- |
3.7561 |
878 |
0.0939 |
- |
- |
- |
- |
- |
3.7604 |
879 |
0.032 |
- |
- |
- |
- |
- |
3.7647 |
880 |
0.0057 |
- |
- |
- |
- |
- |
3.7690 |
881 |
0.0096 |
- |
- |
- |
- |
- |
3.7733 |
882 |
0.0072 |
- |
- |
- |
- |
- |
3.7775 |
883 |
0.0078 |
- |
- |
- |
- |
- |
3.7818 |
884 |
0.026 |
- |
- |
- |
- |
- |
3.7861 |
885 |
0.0838 |
- |
- |
- |
- |
- |
3.7904 |
886 |
0.0328 |
- |
- |
- |
- |
- |
3.7947 |
887 |
0.0164 |
- |
- |
- |
- |
- |
3.7989 |
888 |
0.0101 |
- |
- |
- |
- |
- |
3.8032 |
889 |
0.0144 |
- |
- |
- |
- |
- |
3.8075 |
890 |
0.0169 |
- |
- |
- |
- |
- |
3.8118 |
891 |
0.0752 |
- |
- |
- |
- |
- |
3.8160 |
892 |
0.1062 |
- |
- |
- |
- |
- |
3.8203 |
893 |
0.0816 |
- |
- |
- |
- |
- |
3.8246 |
894 |
0.0385 |
- |
- |
- |
- |
- |
3.8289 |
895 |
0.0174 |
- |
- |
- |
- |
- |
3.8332 |
896 |
0.0093 |
- |
- |
- |
- |
- |
3.8374 |
897 |
0.0117 |
- |
- |
- |
- |
- |
3.8417 |
898 |
0.0304 |
- |
- |
- |
- |
- |
3.8460 |
899 |
0.0103 |
- |
- |
- |
- |
- |
3.8503 |
900 |
0.0251 |
- |
- |
- |
- |
- |
3.8545 |
901 |
0.0352 |
- |
- |
- |
- |
- |
3.8588 |
902 |
0.0266 |
- |
- |
- |
- |
- |
3.8631 |
903 |
0.0085 |
- |
- |
- |
- |
- |
3.8674 |
904 |
0.0189 |
- |
- |
- |
- |
- |
3.8717 |
905 |
0.0349 |
- |
- |
- |
- |
- |
3.8759 |
906 |
0.037 |
- |
- |
- |
- |
- |
3.8802 |
907 |
0.0215 |
- |
- |
- |
- |
- |
3.8845 |
908 |
0.0113 |
- |
- |
- |
- |
- |
3.8888 |
909 |
0.0063 |
- |
- |
- |
- |
- |
3.8930 |
910 |
0.0102 |
- |
- |
- |
- |
- |
3.8973 |
911 |
0.0108 |
- |
- |
- |
- |
- |
3.9016 |
912 |
0.0059 |
- |
- |
- |
- |
- |
3.9059 |
913 |
0.0373 |
- |
- |
- |
- |
- |
3.9102 |
914 |
0.0147 |
- |
- |
- |
- |
- |
3.9144 |
915 |
0.0508 |
- |
- |
- |
- |
- |
3.9187 |
916 |
0.0297 |
- |
- |
- |
- |
- |
3.9230 |
917 |
0.043 |
- |
- |
- |
- |
- |
3.9273 |
918 |
0.0066 |
- |
- |
- |
- |
- |
3.9316 |
919 |
0.016 |
- |
- |
- |
- |
- |
3.9358 |
920 |
0.0046 |
- |
- |
- |
- |
- |
3.9401 |
921 |
0.0123 |
- |
- |
- |
- |
- |
3.9444 |
922 |
0.0178 |
- |
- |
- |
- |
- |
3.9487 |
923 |
0.044 |
- |
- |
- |
- |
- |
3.9529 |
924 |
0.1045 |
- |
- |
- |
- |
- |
3.9572 |
925 |
0.0353 |
- |
- |
- |
- |
- |
3.9615 |
926 |
0.0692 |
- |
- |
- |
- |
- |
3.9658 |
927 |
0.0108 |
- |
- |
- |
- |
- |
3.9701 |
928 |
0.007 |
- |
- |
- |
- |
- |
3.9743 |
929 |
0.0146 |
- |
- |
- |
- |
- |
3.9786 |
930 |
0.0123 |
- |
- |
- |
- |
- |
3.9829 |
931 |
0.0036 |
- |
- |
- |
- |
- |
3.9872 |
932 |
0.0057 |
- |
- |
- |
- |
- |
3.9914 |
933 |
0.0495 |
- |
- |
- |
- |
- |
3.9957 |
934 |
0.0429 |
- |
- |
- |
- |
- |
4.0 |
935 |
0.0226 |
0.3572 |
0.3768 |
0.3820 |
0.3084 |
0.3844 |
4.0043 |
936 |
0.017 |
- |
- |
- |
- |
- |
4.0086 |
937 |
0.0392 |
- |
- |
- |
- |
- |
4.0128 |
938 |
0.0094 |
- |
- |
- |
- |
- |
4.0171 |
939 |
0.01 |
- |
- |
- |
- |
- |
4.0214 |
940 |
0.0086 |
- |
- |
- |
- |
- |
4.0257 |
941 |
0.0226 |
- |
- |
- |
- |
- |
4.0299 |
942 |
0.0263 |
- |
- |
- |
- |
- |
4.0342 |
943 |
0.0089 |
- |
- |
- |
- |
- |
4.0385 |
944 |
0.0059 |
- |
- |
- |
- |
- |
4.0428 |
945 |
0.027 |
- |
- |
- |
- |
- |
4.0471 |
946 |
0.052 |
- |
- |
- |
- |
- |
4.0513 |
947 |
0.0183 |
- |
- |
- |
- |
- |
4.0556 |
948 |
0.0165 |
- |
- |
- |
- |
- |
4.0599 |
949 |
0.0036 |
- |
- |
- |
- |
- |
4.0642 |
950 |
0.0039 |
- |
- |
- |
- |
- |
4.0684 |
951 |
0.0198 |
- |
- |
- |
- |
- |
4.0727 |
952 |
0.0259 |
- |
- |
- |
- |
- |
4.0770 |
953 |
0.0109 |
- |
- |
- |
- |
- |
4.0813 |
954 |
0.091 |
- |
- |
- |
- |
- |
4.0856 |
955 |
0.019 |
- |
- |
- |
- |
- |
4.0898 |
956 |
0.0135 |
- |
- |
- |
- |
- |
4.0941 |
957 |
0.1946 |
- |
- |
- |
- |
- |
4.0984 |
958 |
0.0158 |
- |
- |
- |
- |
- |
4.1027 |
959 |
0.0379 |
- |
- |
- |
- |
- |
4.1070 |
960 |
0.0071 |
- |
- |
- |
- |
- |
4.1112 |
961 |
0.0332 |
- |
- |
- |
- |
- |
4.1155 |
962 |
0.0157 |
- |
- |
- |
- |
- |
4.1198 |
963 |
0.0261 |
- |
- |
- |
- |
- |
4.1241 |
964 |
0.0107 |
- |
- |
- |
- |
- |
4.1283 |
965 |
0.0046 |
- |
- |
- |
- |
- |
4.1326 |
966 |
0.0078 |
- |
- |
- |
- |
- |
4.1369 |
967 |
0.0086 |
- |
- |
- |
- |
- |
4.1412 |
968 |
0.0261 |
- |
- |
- |
- |
- |
4.1455 |
969 |
0.0271 |
- |
- |
- |
- |
- |
4.1497 |
970 |
0.009 |
- |
- |
- |
- |
- |
4.1540 |
971 |
0.0342 |
- |
- |
- |
- |
- |
4.1583 |
972 |
0.0561 |
- |
- |
- |
- |
- |
4.1626 |
973 |
0.0559 |
- |
- |
- |
- |
- |
4.1668 |
974 |
0.024 |
- |
- |
- |
- |
- |
4.1711 |
975 |
0.0083 |
- |
- |
- |
- |
- |
4.1754 |
976 |
0.0757 |
- |
- |
- |
- |
- |
4.1797 |
977 |
0.0353 |
- |
- |
- |
- |
- |
4.1840 |
978 |
0.0135 |
- |
- |
- |
- |
- |
4.1882 |
979 |
0.0681 |
- |
- |
- |
- |
- |
4.1925 |
980 |
0.0132 |
- |
- |
- |
- |
- |
4.1968 |
981 |
0.0104 |
- |
- |
- |
- |
- |
4.2011 |
982 |
0.0191 |
- |
- |
- |
- |
- |
4.2053 |
983 |
0.0684 |
- |
- |
- |
- |
- |
4.2096 |
984 |
0.0176 |
- |
- |
- |
- |
- |
4.2139 |
985 |
0.0193 |
- |
- |
- |
- |
- |
4.2182 |
986 |
0.0105 |
- |
- |
- |
- |
- |
4.2225 |
987 |
0.0057 |
- |
- |
- |
- |
- |
4.2267 |
988 |
0.0069 |
- |
- |
- |
- |
- |
4.2310 |
989 |
0.0237 |
- |
- |
- |
- |
- |
4.2353 |
990 |
0.0571 |
- |
- |
- |
- |
- |
4.2396 |
991 |
0.0182 |
- |
- |
- |
- |
- |
4.2439 |
992 |
0.0093 |
- |
- |
- |
- |
- |
4.2481 |
993 |
0.0366 |
- |
- |
- |
- |
- |
4.2524 |
994 |
0.0132 |
- |
- |
- |
- |
- |
4.2567 |
995 |
0.0192 |
- |
- |
- |
- |
- |
4.2610 |
996 |
0.0127 |
- |
- |
- |
- |
- |
4.2652 |
997 |
0.0067 |
- |
- |
- |
- |
- |
4.2695 |
998 |
0.0228 |
- |
- |
- |
- |
- |
4.2738 |
999 |
0.0212 |
- |
- |
- |
- |
- |
4.2781 |
1000 |
0.0061 |
- |
- |
- |
- |
- |
4.2824 |
1001 |
0.0057 |
- |
- |
- |
- |
- |
4.2866 |
1002 |
0.0037 |
- |
- |
- |
- |
- |
4.2909 |
1003 |
0.0108 |
- |
- |
- |
- |
- |
4.2952 |
1004 |
0.0089 |
- |
- |
- |
- |
- |
4.2995 |
1005 |
0.013 |
- |
- |
- |
- |
- |
4.3037 |
1006 |
0.0157 |
- |
- |
- |
- |
- |
4.3080 |
1007 |
0.0101 |
- |
- |
- |
- |
- |
4.3123 |
1008 |
0.0032 |
- |
- |
- |
- |
- |
4.3166 |
1009 |
0.0151 |
- |
- |
- |
- |
- |
4.3209 |
1010 |
0.0287 |
- |
- |
- |
- |
- |
4.3251 |
1011 |
0.0192 |
- |
- |
- |
- |
- |
4.3294 |
1012 |
0.0124 |
- |
- |
- |
- |
- |
4.3337 |
1013 |
0.0035 |
- |
- |
- |
- |
- |
4.3380 |
1014 |
0.0091 |
- |
- |
- |
- |
- |
4.3422 |
1015 |
0.0477 |
- |
- |
- |
- |
- |
4.3465 |
1016 |
0.0042 |
- |
- |
- |
- |
- |
4.3508 |
1017 |
0.0133 |
- |
- |
- |
- |
- |
4.3551 |
1018 |
0.013 |
- |
- |
- |
- |
- |
4.3594 |
1019 |
0.0302 |
- |
- |
- |
- |
- |
4.3636 |
1020 |
0.0072 |
- |
- |
- |
- |
- |
4.3679 |
1021 |
0.011 |
- |
- |
- |
- |
- |
4.3722 |
1022 |
0.0165 |
- |
- |
- |
- |
- |
4.3765 |
1023 |
0.0259 |
- |
- |
- |
- |
- |
4.3807 |
1024 |
0.0101 |
- |
- |
- |
- |
- |
4.3850 |
1025 |
0.0132 |
- |
- |
- |
- |
- |
4.3893 |
1026 |
0.0134 |
- |
- |
- |
- |
- |
4.3936 |
1027 |
0.0365 |
- |
- |
- |
- |
- |
4.3979 |
1028 |
0.0314 |
- |
- |
- |
- |
- |
4.4021 |
1029 |
0.02 |
- |
- |
- |
- |
- |
4.4064 |
1030 |
0.009 |
- |
- |
- |
- |
- |
4.4107 |
1031 |
0.021 |
- |
- |
- |
- |
- |
4.4150 |
1032 |
0.031 |
- |
- |
- |
- |
- |
4.4193 |
1033 |
0.0116 |
- |
- |
- |
- |
- |
4.4235 |
1034 |
0.0126 |
- |
- |
- |
- |
- |
4.4278 |
1035 |
0.0171 |
- |
- |
- |
- |
- |
4.4321 |
1036 |
0.0084 |
- |
- |
- |
- |
- |
4.4364 |
1037 |
0.0101 |
- |
- |
- |
- |
- |
4.4406 |
1038 |
0.0116 |
- |
- |
- |
- |
- |
4.4449 |
1039 |
0.0131 |
- |
- |
- |
- |
- |
4.4492 |
1040 |
0.0513 |
- |
- |
- |
- |
- |
4.4535 |
1041 |
0.0487 |
- |
- |
- |
- |
- |
4.4578 |
1042 |
0.0034 |
- |
- |
- |
- |
- |
4.4620 |
1043 |
0.0036 |
- |
- |
- |
- |
- |
4.4663 |
1044 |
0.0173 |
- |
- |
- |
- |
- |
4.4706 |
1045 |
0.0071 |
- |
- |
- |
- |
- |
4.4749 |
1046 |
0.0019 |
- |
- |
- |
- |
- |
4.4791 |
1047 |
0.0171 |
- |
- |
- |
- |
- |
4.4834 |
1048 |
0.0044 |
- |
- |
- |
- |
- |
4.4877 |
1049 |
0.0397 |
- |
- |
- |
- |
- |
4.4920 |
1050 |
0.0827 |
- |
- |
- |
- |
- |
4.4963 |
1051 |
0.0148 |
- |
- |
- |
- |
- |
4.5005 |
1052 |
0.0054 |
- |
- |
- |
- |
- |
4.5048 |
1053 |
0.0141 |
- |
- |
- |
- |
- |
4.5091 |
1054 |
0.0233 |
- |
- |
- |
- |
- |
4.5134 |
1055 |
0.0088 |
- |
- |
- |
- |
- |
4.5176 |
1056 |
0.0034 |
- |
- |
- |
- |
- |
4.5219 |
1057 |
0.0145 |
- |
- |
- |
- |
- |
4.5262 |
1058 |
0.0456 |
- |
- |
- |
- |
- |
4.5305 |
1059 |
0.0051 |
- |
- |
- |
- |
- |
4.5348 |
1060 |
0.0106 |
- |
- |
- |
- |
- |
4.5390 |
1061 |
0.0114 |
- |
- |
- |
- |
- |
4.5433 |
1062 |
0.0105 |
- |
- |
- |
- |
- |
4.5476 |
1063 |
0.041 |
- |
- |
- |
- |
- |
4.5519 |
1064 |
0.0776 |
- |
- |
- |
- |
- |
4.5561 |
1065 |
0.0055 |
- |
- |
- |
- |
- |
4.5604 |
1066 |
0.0139 |
- |
- |
- |
- |
- |
4.5647 |
1067 |
0.0246 |
- |
- |
- |
- |
- |
4.5690 |
1068 |
0.0127 |
- |
- |
- |
- |
- |
4.5733 |
1069 |
0.0084 |
- |
- |
- |
- |
- |
4.5775 |
1070 |
0.0157 |
- |
- |
- |
- |
- |
4.5818 |
1071 |
0.0086 |
- |
- |
- |
- |
- |
4.5861 |
1072 |
0.0129 |
- |
- |
- |
- |
- |
4.5904 |
1073 |
0.0111 |
- |
- |
- |
- |
- |
4.5947 |
1074 |
0.0069 |
- |
- |
- |
- |
- |
4.5989 |
1075 |
0.006 |
- |
- |
- |
- |
- |
4.6032 |
1076 |
0.0099 |
- |
- |
- |
- |
- |
4.6075 |
1077 |
0.0459 |
- |
- |
- |
- |
- |
4.6118 |
1078 |
0.0332 |
- |
- |
- |
- |
- |
4.6160 |
1079 |
0.0317 |
- |
- |
- |
- |
- |
4.6203 |
1080 |
0.0444 |
- |
- |
- |
- |
- |
4.6246 |
1081 |
0.0416 |
- |
- |
- |
- |
- |
4.6289 |
1082 |
0.0022 |
- |
- |
- |
- |
- |
4.6332 |
1083 |
0.0023 |
- |
- |
- |
- |
- |
4.6374 |
1084 |
0.004 |
- |
- |
- |
- |
- |
4.6417 |
1085 |
0.0127 |
- |
- |
- |
- |
- |
4.6460 |
1086 |
0.0664 |
- |
- |
- |
- |
- |
4.6503 |
1087 |
0.0348 |
- |
- |
- |
- |
- |
4.6545 |
1088 |
0.0384 |
- |
- |
- |
- |
- |
4.6588 |
1089 |
0.0067 |
- |
- |
- |
- |
- |
4.6631 |
1090 |
0.0136 |
- |
- |
- |
- |
- |
4.6674 |
1091 |
0.0095 |
- |
- |
- |
- |
- |
4.6717 |
1092 |
0.0178 |
- |
- |
- |
- |
- |
4.6759 |
1093 |
0.0073 |
- |
- |
- |
- |
- |
4.6802 |
1094 |
0.0435 |
- |
- |
- |
- |
- |
4.6845 |
1095 |
0.0158 |
- |
- |
- |
- |
- |
4.6888 |
1096 |
0.0291 |
- |
- |
- |
- |
- |
4.6930 |
1097 |
0.0087 |
- |
- |
- |
- |
- |
4.6973 |
1098 |
0.0152 |
- |
- |
- |
- |
- |
4.7016 |
1099 |
0.0118 |
- |
- |
- |
- |
- |
4.7059 |
1100 |
0.0282 |
- |
- |
- |
- |
- |
4.7102 |
1101 |
0.085 |
- |
- |
- |
- |
- |
4.7144 |
1102 |
0.0545 |
- |
- |
- |
- |
- |
4.7187 |
1103 |
0.0135 |
- |
- |
- |
- |
- |
4.7230 |
1104 |
0.0586 |
- |
- |
- |
- |
- |
4.7273 |
1105 |
0.0332 |
- |
- |
- |
- |
- |
4.7316 |
1106 |
0.012 |
- |
- |
- |
- |
- |
4.7358 |
1107 |
0.0268 |
- |
- |
- |
- |
- |
4.7401 |
1108 |
0.0208 |
- |
- |
- |
- |
- |
4.7444 |
1109 |
0.04 |
- |
- |
- |
- |
- |
4.7487 |
1110 |
0.0072 |
- |
- |
- |
- |
- |
4.7529 |
1111 |
0.0238 |
- |
- |
- |
- |
- |
4.7572 |
1112 |
0.0267 |
- |
- |
- |
- |
- |
4.7615 |
1113 |
0.0091 |
- |
- |
- |
- |
- |
4.7658 |
1114 |
0.0057 |
- |
- |
- |
- |
- |
4.7701 |
1115 |
0.0045 |
- |
- |
- |
- |
- |
4.7743 |
1116 |
0.0064 |
- |
- |
- |
- |
- |
4.7786 |
1117 |
0.0109 |
- |
- |
- |
- |
- |
4.7829 |
1118 |
0.0115 |
- |
- |
- |
- |
- |
4.7872 |
1119 |
0.0308 |
- |
- |
- |
- |
- |
4.7914 |
1120 |
0.0183 |
- |
- |
- |
- |
- |
4.7957 |
1121 |
0.0106 |
- |
- |
- |
- |
- |
4.8 |
1122 |
0.0085 |
- |
- |
- |
- |
- |
4.8043 |
1123 |
0.0114 |
- |
- |
- |
- |
- |
4.8086 |
1124 |
0.0088 |
- |
- |
- |
- |
- |
4.8128 |
1125 |
0.0139 |
- |
- |
- |
- |
- |
4.8171 |
1126 |
0.0688 |
- |
- |
- |
- |
- |
4.8214 |
1127 |
0.0323 |
- |
- |
- |
- |
- |
4.8257 |
1128 |
0.0226 |
- |
- |
- |
- |
- |
4.8299 |
1129 |
0.0144 |
- |
- |
- |
- |
- |
4.8342 |
1130 |
0.0043 |
- |
- |
- |
- |
- |
4.8385 |
1131 |
0.0064 |
- |
- |
- |
- |
- |
4.8428 |
1132 |
0.0357 |
- |
- |
- |
- |
- |
4.8471 |
1133 |
0.0212 |
- |
- |
- |
- |
- |
4.8513 |
1134 |
0.0231 |
- |
- |
- |
- |
- |
4.8556 |
1135 |
0.0326 |
- |
- |
- |
- |
- |
4.8599 |
1136 |
0.0153 |
- |
- |
- |
- |
- |
4.8642 |
1137 |
0.0064 |
- |
- |
- |
- |
- |
4.8684 |
1138 |
0.0134 |
- |
- |
- |
- |
- |
4.8727 |
1139 |
0.0242 |
- |
- |
- |
- |
- |
4.8770 |
1140 |
0.0774 |
- |
- |
- |
- |
- |
4.8813 |
1141 |
0.023 |
- |
- |
- |
- |
- |
4.8856 |
1142 |
0.0066 |
- |
- |
- |
- |
- |
4.8898 |
1143 |
0.0063 |
- |
- |
- |
- |
- |
4.8941 |
1144 |
0.0054 |
- |
- |
- |
- |
- |
4.8984 |
1145 |
0.0079 |
- |
- |
- |
- |
- |
4.9027 |
1146 |
0.0064 |
- |
- |
- |
- |
- |
4.9070 |
1147 |
0.0125 |
- |
- |
- |
- |
- |
4.9112 |
1148 |
0.0134 |
- |
- |
- |
- |
- |
4.9155 |
1149 |
0.0185 |
- |
- |
- |
- |
- |
4.9198 |
1150 |
0.0152 |
- |
- |
- |
- |
- |
4.9241 |
1151 |
0.0116 |
- |
- |
- |
- |
- |
4.9283 |
1152 |
0.0103 |
- |
- |
- |
- |
- |
4.9326 |
1153 |
0.005 |
- |
- |
- |
- |
- |
4.9369 |
1154 |
0.0047 |
- |
- |
- |
- |
- |
4.9412 |
1155 |
0.0227 |
- |
- |
- |
- |
- |
4.9455 |
1156 |
0.0225 |
- |
- |
- |
- |
- |
4.9497 |
1157 |
0.0084 |
- |
- |
- |
- |
- |
4.9540 |
1158 |
0.0819 |
- |
- |
- |
- |
- |
4.9583 |
1159 |
0.0198 |
- |
- |
- |
- |
- |
4.9626 |
1160 |
0.0204 |
- |
- |
- |
- |
- |
4.9668 |
1161 |
0.0043 |
- |
- |
- |
- |
- |
4.9711 |
1162 |
0.037 |
- |
- |
- |
- |
- |
4.9754 |
1163 |
0.0128 |
- |
- |
- |
- |
- |
4.9797 |
1164 |
0.0061 |
- |
- |
- |
- |
- |
4.9840 |
1165 |
0.0064 |
0.3517 |
0.3731 |
0.3808 |
0.3068 |
0.3898 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}