metadata
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Herkules na rozstajach
sentences:
- jak zinterpretować wymowę obrazu Herkules na rozstajach?
- w jakim celu nowożeńcom w Korei wręcza się injeolmi?
- z jakiego powodu zwołano synod w Whitby?
- source_sentence: gdzie rośnie bokkonia?
sentences:
- gdzie występuje rogownica szerokolistna?
- Dłutowanie metodą Maaga Struganie metodą Sunderlanda
- kim byli beatyfikowani przez papieża Jana Pawła II męczennicy z Almerii?
- source_sentence: kto walczył o Brisbane?
sentences:
- Szczurza gorączka TAM Gorączka od ugryzienia szczura
- Szczurza gorączka TAM Gorączka od ugryzienia szczura
- który nadworny fotograf sprzedał swój patent firmie Eastman Kodak?
- source_sentence: Morskie Oko (kabaret)
sentences:
- jak skończył się spór o Morskie Oko?
- ile razy Srebrna Biblia była przywożona do Szwecji?
- W latach 1955–1956 część więźniów przebywających w Spassku zwolniono.
- source_sentence: ile katod ma duodioda?
sentences:
- kto nosi mantyle?
- w jakim celu nowożeńcom w Korei wręcza się injeolmi?
- W latach 1955–1956 część więźniów przebywających w Spassku zwolniono.
model-index:
- name: bge-base-en-v1.5-klej-dyk
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.20432692307692307
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5024038461538461
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6802884615384616
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7548076923076923
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.20432692307692307
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1674679487179487
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1360576923076923
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07548076923076923
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.20432692307692307
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5024038461538461
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6802884615384616
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7548076923076923
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4741957684261531
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3839495573870572
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3909524912840153
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.19471153846153846
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.49278846153846156
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6634615384615384
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7548076923076923
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.19471153846153846
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1642628205128205
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.13269230769230766
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07548076923076921
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.19471153846153846
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.49278846153846156
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6634615384615384
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7548076923076923
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4648228460121699
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.37225847069597073
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.378344181427981
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.18990384615384615
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4543269230769231
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6057692307692307
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7067307692307693
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18990384615384615
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15144230769230768
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12115384615384615
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07067307692307692
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18990384615384615
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4543269230769231
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6057692307692307
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7067307692307693
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.437691661658994
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3522741147741148
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.35902651881139014
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.18509615384615385
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4375
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5480769230769231
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6442307692307693
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18509615384615385
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14583333333333331
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1096153846153846
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06442307692307692
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18509615384615385
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4375
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5480769230769231
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6442307692307693
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4084493303372093
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.33323508089133086
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3393128348021269
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.17307692307692307
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3389423076923077
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.4254807692307692
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5144230769230769
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.17307692307692307
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11298076923076923
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.08509615384615386
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05144230769230769
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.17307692307692307
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3389423076923077
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4254807692307692
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5144230769230769
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.333723313431585
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2768763354700855
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2853193687152632
name: Cosine Map@100
bge-base-en-v1.5-klej-dyk
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'ile katod ma duodioda?',
'kto nosi mantyle?',
'w jakim celu nowożeńcom w Korei wręcza się injeolmi?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.2043 |
cosine_accuracy@3 |
0.5024 |
cosine_accuracy@5 |
0.6803 |
cosine_accuracy@10 |
0.7548 |
cosine_precision@1 |
0.2043 |
cosine_precision@3 |
0.1675 |
cosine_precision@5 |
0.1361 |
cosine_precision@10 |
0.0755 |
cosine_recall@1 |
0.2043 |
cosine_recall@3 |
0.5024 |
cosine_recall@5 |
0.6803 |
cosine_recall@10 |
0.7548 |
cosine_ndcg@10 |
0.4742 |
cosine_mrr@10 |
0.3839 |
cosine_map@100 |
0.391 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1947 |
cosine_accuracy@3 |
0.4928 |
cosine_accuracy@5 |
0.6635 |
cosine_accuracy@10 |
0.7548 |
cosine_precision@1 |
0.1947 |
cosine_precision@3 |
0.1643 |
cosine_precision@5 |
0.1327 |
cosine_precision@10 |
0.0755 |
cosine_recall@1 |
0.1947 |
cosine_recall@3 |
0.4928 |
cosine_recall@5 |
0.6635 |
cosine_recall@10 |
0.7548 |
cosine_ndcg@10 |
0.4648 |
cosine_mrr@10 |
0.3723 |
cosine_map@100 |
0.3783 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1899 |
cosine_accuracy@3 |
0.4543 |
cosine_accuracy@5 |
0.6058 |
cosine_accuracy@10 |
0.7067 |
cosine_precision@1 |
0.1899 |
cosine_precision@3 |
0.1514 |
cosine_precision@5 |
0.1212 |
cosine_precision@10 |
0.0707 |
cosine_recall@1 |
0.1899 |
cosine_recall@3 |
0.4543 |
cosine_recall@5 |
0.6058 |
cosine_recall@10 |
0.7067 |
cosine_ndcg@10 |
0.4377 |
cosine_mrr@10 |
0.3523 |
cosine_map@100 |
0.359 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1851 |
cosine_accuracy@3 |
0.4375 |
cosine_accuracy@5 |
0.5481 |
cosine_accuracy@10 |
0.6442 |
cosine_precision@1 |
0.1851 |
cosine_precision@3 |
0.1458 |
cosine_precision@5 |
0.1096 |
cosine_precision@10 |
0.0644 |
cosine_recall@1 |
0.1851 |
cosine_recall@3 |
0.4375 |
cosine_recall@5 |
0.5481 |
cosine_recall@10 |
0.6442 |
cosine_ndcg@10 |
0.4084 |
cosine_mrr@10 |
0.3332 |
cosine_map@100 |
0.3393 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1731 |
cosine_accuracy@3 |
0.3389 |
cosine_accuracy@5 |
0.4255 |
cosine_accuracy@10 |
0.5144 |
cosine_precision@1 |
0.1731 |
cosine_precision@3 |
0.113 |
cosine_precision@5 |
0.0851 |
cosine_precision@10 |
0.0514 |
cosine_recall@1 |
0.1731 |
cosine_recall@3 |
0.3389 |
cosine_recall@5 |
0.4255 |
cosine_recall@10 |
0.5144 |
cosine_ndcg@10 |
0.3337 |
cosine_mrr@10 |
0.2769 |
cosine_map@100 |
0.2853 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 89.95 tokens
- max: 512 tokens
|
- min: 9 tokens
- mean: 30.73 tokens
- max: 76 tokens
|
- Samples:
positive |
anchor |
Rynek Kolumna Matki Boskiej, tzw. Kolumna Maryjna wykonana w latach 1725-1727 przez Johanna Melchiora Österreicha. |
kto jest autorem kolumny maryjnej na raciborskim rynku? |
Chleb razowy jest ciemniejszy i zawiera większą ilość błonnika oraz składników mineralnych niż chleb biały (pytlowy, czyli wypiekany z mąki przesiewanej przez pytel), bowiem jest w nim większy udział drobin pochodzących z łupin ziarna, gdzie gromadzą się te składniki. |
które składniki razowego chleba odpowiadają za jego walory zdrowotne? |
Najgłębsza znana studnia krasowa to jaskinia Vrtoglavica w Słowenii o głębokości ponad 600 metrów. |
ile metrów głębokości mierzy studnia na podwórzu klasztoru w Czernej? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.6838 |
10 |
6.5594 |
- |
- |
- |
- |
- |
0.9573 |
14 |
- |
0.3319 |
0.3751 |
0.3955 |
0.2618 |
0.4033 |
1.3675 |
20 |
4.2206 |
- |
- |
- |
- |
- |
1.9829 |
29 |
- |
0.3324 |
0.3591 |
0.3807 |
0.2833 |
0.3946 |
2.0513 |
30 |
3.3414 |
- |
- |
- |
- |
- |
2.7350 |
40 |
2.9757 |
- |
- |
- |
- |
- |
2.9402 |
43 |
- |
0.3375 |
0.3570 |
0.3805 |
0.2840 |
0.3905 |
3.4188 |
50 |
2.8884 |
- |
- |
- |
- |
- |
3.8291 |
56 |
- |
0.3393 |
0.359 |
0.3783 |
0.2853 |
0.391 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}