ve88ifz2's picture
Add new SentenceTransformer model.
f60ae21 verified
metadata
base_model: BAAI/bge-base-en-v1.5
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: Herkules na rozstajach
    sentences:
      - jak zinterpretować wymowę obrazu Herkules na rozstajach?
      - w jakim celu nowożeńcom w Korei wręcza się injeolmi?
      - z jakiego powodu zwołano synod w Whitby?
  - source_sentence: gdzie rośnie bokkonia?
    sentences:
      - gdzie występuje rogownica szerokolistna?
      - Dłutowanie metodą Maaga Struganie metodą Sunderlanda
      - kim byli beatyfikowani przez papieża Jana Pawła II męczennicy z Almerii?
  - source_sentence: kto walczył o Brisbane?
    sentences:
      - Szczurza gorączka TAM Gorączka od ugryzienia szczura
      - Szczurza gorączka TAM Gorączka od ugryzienia szczura
      - który nadworny fotograf sprzedał swój patent firmie Eastman Kodak?
  - source_sentence: Morskie Oko (kabaret)
    sentences:
      - jak skończył się spór o Morskie Oko?
      - ile razy Srebrna Biblia była przywożona do Szwecji?
      - W latach 1955–1956 część więźniów przebywających w Spassku zwolniono.
  - source_sentence: ile katod ma duodioda?
    sentences:
      - kto nosi mantyle?
      - w jakim celu nowożeńcom w Korei wręcza się injeolmi?
      - W latach 1955–1956 część więźniów przebywających w Spassku zwolniono.
model-index:
  - name: bge-base-en-v1.5-klej-dyk
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.20432692307692307
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.5024038461538461
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6802884615384616
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7548076923076923
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.20432692307692307
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1674679487179487
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1360576923076923
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07548076923076923
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.20432692307692307
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.5024038461538461
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6802884615384616
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7548076923076923
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4741957684261531
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3839495573870572
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3909524912840153
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.19471153846153846
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.49278846153846156
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6634615384615384
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7548076923076923
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.19471153846153846
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.1642628205128205
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.13269230769230766
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07548076923076921
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.19471153846153846
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.49278846153846156
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6634615384615384
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7548076923076923
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4648228460121699
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.37225847069597073
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.378344181427981
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.18990384615384615
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4543269230769231
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6057692307692307
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7067307692307693
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18990384615384615
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15144230769230768
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.12115384615384615
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07067307692307692
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.18990384615384615
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4543269230769231
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.6057692307692307
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.7067307692307693
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.437691661658994
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3522741147741148
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.35902651881139014
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.18509615384615385
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4375
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5480769230769231
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6442307692307693
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.18509615384615385
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.14583333333333331
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1096153846153846
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06442307692307692
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.18509615384615385
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.4375
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5480769230769231
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6442307692307693
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4084493303372093
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.33323508089133086
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3393128348021269
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.17307692307692307
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.3389423076923077
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.4254807692307692
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5144230769230769
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.17307692307692307
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.11298076923076923
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.08509615384615386
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.05144230769230769
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.17307692307692307
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.3389423076923077
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.4254807692307692
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5144230769230769
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.333723313431585
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.2768763354700855
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2853193687152632
            name: Cosine Map@100

bge-base-en-v1.5-klej-dyk

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'ile katod ma duodioda?',
    'kto nosi mantyle?',
    'w jakim celu nowożeńcom w Korei wręcza się injeolmi?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.2043
cosine_accuracy@3 0.5024
cosine_accuracy@5 0.6803
cosine_accuracy@10 0.7548
cosine_precision@1 0.2043
cosine_precision@3 0.1675
cosine_precision@5 0.1361
cosine_precision@10 0.0755
cosine_recall@1 0.2043
cosine_recall@3 0.5024
cosine_recall@5 0.6803
cosine_recall@10 0.7548
cosine_ndcg@10 0.4742
cosine_mrr@10 0.3839
cosine_map@100 0.391

Information Retrieval

Metric Value
cosine_accuracy@1 0.1947
cosine_accuracy@3 0.4928
cosine_accuracy@5 0.6635
cosine_accuracy@10 0.7548
cosine_precision@1 0.1947
cosine_precision@3 0.1643
cosine_precision@5 0.1327
cosine_precision@10 0.0755
cosine_recall@1 0.1947
cosine_recall@3 0.4928
cosine_recall@5 0.6635
cosine_recall@10 0.7548
cosine_ndcg@10 0.4648
cosine_mrr@10 0.3723
cosine_map@100 0.3783

Information Retrieval

Metric Value
cosine_accuracy@1 0.1899
cosine_accuracy@3 0.4543
cosine_accuracy@5 0.6058
cosine_accuracy@10 0.7067
cosine_precision@1 0.1899
cosine_precision@3 0.1514
cosine_precision@5 0.1212
cosine_precision@10 0.0707
cosine_recall@1 0.1899
cosine_recall@3 0.4543
cosine_recall@5 0.6058
cosine_recall@10 0.7067
cosine_ndcg@10 0.4377
cosine_mrr@10 0.3523
cosine_map@100 0.359

Information Retrieval

Metric Value
cosine_accuracy@1 0.1851
cosine_accuracy@3 0.4375
cosine_accuracy@5 0.5481
cosine_accuracy@10 0.6442
cosine_precision@1 0.1851
cosine_precision@3 0.1458
cosine_precision@5 0.1096
cosine_precision@10 0.0644
cosine_recall@1 0.1851
cosine_recall@3 0.4375
cosine_recall@5 0.5481
cosine_recall@10 0.6442
cosine_ndcg@10 0.4084
cosine_mrr@10 0.3332
cosine_map@100 0.3393

Information Retrieval

Metric Value
cosine_accuracy@1 0.1731
cosine_accuracy@3 0.3389
cosine_accuracy@5 0.4255
cosine_accuracy@10 0.5144
cosine_precision@1 0.1731
cosine_precision@3 0.113
cosine_precision@5 0.0851
cosine_precision@10 0.0514
cosine_recall@1 0.1731
cosine_recall@3 0.3389
cosine_recall@5 0.4255
cosine_recall@10 0.5144
cosine_ndcg@10 0.3337
cosine_mrr@10 0.2769
cosine_map@100 0.2853

Training Details

Training Dataset

Unnamed Dataset

  • Size: 3,738 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 89.95 tokens
    • max: 512 tokens
    • min: 9 tokens
    • mean: 30.73 tokens
    • max: 76 tokens
  • Samples:
    positive anchor
    Rynek Kolumna Matki Boskiej, tzw. Kolumna Maryjna wykonana w latach 1725-1727 przez Johanna Melchiora Österreicha. kto jest autorem kolumny maryjnej na raciborskim rynku?
    Chleb razowy jest ciemniejszy i zawiera większą ilość błonnika oraz składników mineralnych niż chleb biały (pytlowy, czyli wypiekany z mąki przesiewanej przez pytel), bowiem jest w nim większy udział drobin pochodzących z łupin ziarna, gdzie gromadzą się te składniki. które składniki razowego chleba odpowiadają za jego walory zdrowotne?
    Najgłębsza znana studnia krasowa to jaskinia Vrtoglavica w Słowenii o głębokości ponad 600 metrów. ile metrów głębokości mierzy studnia na podwórzu klasztoru w Czernej?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.6838 10 6.5594 - - - - -
0.9573 14 - 0.3319 0.3751 0.3955 0.2618 0.4033
1.3675 20 4.2206 - - - - -
1.9829 29 - 0.3324 0.3591 0.3807 0.2833 0.3946
2.0513 30 3.3414 - - - - -
2.7350 40 2.9757 - - - - -
2.9402 43 - 0.3375 0.3570 0.3805 0.2840 0.3905
3.4188 50 2.8884 - - - - -
3.8291 56 - 0.3393 0.359 0.3783 0.2853 0.391
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.12.2
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.3.1
  • Accelerate: 0.27.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}