|
import gradio as gr |
|
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed |
|
from omegaconf import OmegaConf |
|
import torch |
|
from diffusers.utils.import_utils import is_xformers_available |
|
import torchvision |
|
from utils import mask_generation_before |
|
import os |
|
import cv2 |
|
|
|
config_path = "./configs/sample_i2v.yaml" |
|
args = OmegaConf.load(config_path) |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
css = """ |
|
h1 { |
|
text-align: center; |
|
} |
|
#component-0 { |
|
max-width: 730px; |
|
margin: auto; |
|
} |
|
""" |
|
|
|
def infer(prompt, image_inp, seed_inp, ddim_steps,width,height): |
|
setup_seed(seed_inp) |
|
args.num_sampling_steps = ddim_steps |
|
img = cv2.imread(image_inp) |
|
new_size = [height,width] |
|
args.image_size = new_size |
|
vae, model, text_encoder, diffusion = model_i2v_fun(args) |
|
vae.to(device) |
|
model.to(device) |
|
text_encoder.to(device) |
|
|
|
if args.use_fp16: |
|
vae.to(dtype=torch.float16) |
|
model.to(dtype=torch.float16) |
|
text_encoder.to(dtype=torch.float16) |
|
|
|
if args.enable_xformers_memory_efficient_attention and device=="cuda": |
|
if is_xformers_available(): |
|
model.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError("xformers is not available. Make sure it is installed correctly") |
|
|
|
|
|
video_input, reserve_frames = get_input(image_inp, args) |
|
video_input = video_input.to(device).unsqueeze(0) |
|
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) |
|
masked_video = video_input * (mask == 0) |
|
prompt = prompt + args.additional_prompt |
|
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) |
|
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) |
|
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8) |
|
|
|
|
|
return os.path.join(args.save_img_path, prompt+ '.mp4') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> |
|
SEINE: Image-to-Video generation |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
Apply SEINE to generate a video |
|
</p> |
|
</div> |
|
""" |
|
|
|
|
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>") |
|
gr.Markdown( |
|
"""<div style="text-align:center"> |
|
[<a href="https://arxiv.org/abs/2310.20700">Arxiv Report</a>] | [<a href="https://vchitect.github.io/SEINE-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/SEINE">Github</a>]</div> |
|
""" |
|
) |
|
with gr.Column(elem_id="col-container"): |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
image_inp = gr.Image(type='filepath') |
|
|
|
with gr.Column(): |
|
|
|
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in") |
|
|
|
with gr.Row(): |
|
|
|
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1) |
|
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in") |
|
with gr.Row(): |
|
width = gr.Slider(label='width',minimum=1,maximum=2000,value=512,step=1) |
|
height = gr.Slider(label='height',minimum=1,maximum=2000,value=320,step=1) |
|
|
|
|
|
|
|
|
|
submit_btn = gr.Button("Generate video") |
|
|
|
|
|
video_out = gr.Video(label="Video result", elem_id="video-output", width = 800) |
|
inputs = [prompt,image_inp, seed_inp, ddim_steps,width,height] |
|
outputs = [video_out] |
|
ex = gr.Examples( |
|
examples = [["./The_picture_shows_the_beauty_of_the_sea_.jpg","A video of the beauty of the sea",123,250,560,240], |
|
["./The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",123,250,560,240], |
|
["./Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",123,250,560,240]], |
|
fn = infer, |
|
inputs = [image_inp, prompt, seed_inp, ddim_steps,width,height], |
|
outputs=[video_out], |
|
cache_examples=False |
|
|
|
|
|
) |
|
ex.dataset.headers = [""] |
|
|
|
|
|
|
|
submit_btn.click(infer, inputs, outputs) |
|
|
|
|
|
|
|
demo.queue(max_size=12).launch() |
|
|
|
|
|
|