vdo
/

Diffusers
SEINE / app.py
camenduru's picture
thanks to Vchitect ❤
48cb3e0
import gradio as gr
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed
from omegaconf import OmegaConf
import torch
from diffusers.utils.import_utils import is_xformers_available
import torchvision
from utils import mask_generation_before
import os
import cv2
config_path = "./configs/sample_i2v.yaml"
args = OmegaConf.load(config_path)
device = "cuda" if torch.cuda.is_available() else "cpu"
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
def infer(prompt, image_inp, seed_inp, ddim_steps,width,height):
setup_seed(seed_inp)
args.num_sampling_steps = ddim_steps
img = cv2.imread(image_inp)
new_size = [height,width]
args.image_size = new_size
vae, model, text_encoder, diffusion = model_i2v_fun(args)
vae.to(device)
model.to(device)
text_encoder.to(device)
if args.use_fp16:
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
if args.enable_xformers_memory_efficient_attention and device=="cuda":
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
video_input, reserve_frames = get_input(image_inp, args)
video_input = video_input.to(device).unsqueeze(0)
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
masked_video = video_input * (mask == 0)
prompt = prompt + args.additional_prompt
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
torchvision.io.write_video(os.path.join(args.save_img_path, prompt+ '.mp4'), video_, fps=8)
return os.path.join(args.save_img_path, prompt+ '.mp4')
# def clean():
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
# return gr.Video.update(value=None)
title = """
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
SEINE: Image-to-Video generation
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Apply SEINE to generate a video
</p>
</div>
"""
with gr.Blocks(css='style.css') as demo:
gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>")
gr.Markdown(
"""<div style="text-align:center">
[<a href="https://arxiv.org/abs/2310.20700">Arxiv Report</a>] | [<a href="https://vchitect.github.io/SEINE-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/SEINE">Github</a>]</div>
"""
)
with gr.Column(elem_id="col-container"):
# gr.HTML(title)
with gr.Row():
with gr.Column():
image_inp = gr.Image(type='filepath')
with gr.Column():
prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
with gr.Row():
# control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in")
with gr.Row():
width = gr.Slider(label='width',minimum=1,maximum=2000,value=512,step=1)
height = gr.Slider(label='height',minimum=1,maximum=2000,value=320,step=1)
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
submit_btn = gr.Button("Generate video")
# clean_btn = gr.Button("Clean video")
video_out = gr.Video(label="Video result", elem_id="video-output", width = 800)
inputs = [prompt,image_inp, seed_inp, ddim_steps,width,height]
outputs = [video_out]
ex = gr.Examples(
examples = [["./The_picture_shows_the_beauty_of_the_sea_.jpg","A video of the beauty of the sea",123,250,560,240],
["./The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",123,250,560,240],
["./Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",123,250,560,240]],
fn = infer,
inputs = [image_inp, prompt, seed_inp, ddim_steps,width,height],
outputs=[video_out],
cache_examples=False
)
ex.dataset.headers = [""]
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
# clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
submit_btn.click(infer, inputs, outputs)
# share_button.click(None, [], [], _js=share_js)
demo.queue(max_size=12).launch()