vdo
/

Diffusers
File size: 5,615 Bytes
48cb3e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import gradio as gr
from image_to_video import model_i2v_fun, get_input, auto_inpainting, setup_seed
from omegaconf import OmegaConf
import torch
from diffusers.utils.import_utils import is_xformers_available
import torchvision 
from utils import mask_generation_before
import os 
import cv2

config_path = "./configs/sample_i2v.yaml"
args = OmegaConf.load(config_path)
device = "cuda" if torch.cuda.is_available() else "cpu"

css = """
h1 {
  text-align: center;
}
#component-0 {
  max-width: 730px;
  margin: auto;
}
"""

def infer(prompt, image_inp, seed_inp, ddim_steps,width,height):
    setup_seed(seed_inp)
    args.num_sampling_steps = ddim_steps
    img = cv2.imread(image_inp)
    new_size = [height,width]  
    args.image_size = new_size
    vae, model, text_encoder, diffusion = model_i2v_fun(args)
    vae.to(device)
    model.to(device)
    text_encoder.to(device)

    if args.use_fp16:
        vae.to(dtype=torch.float16)
        model.to(dtype=torch.float16)
        text_encoder.to(dtype=torch.float16)

    if args.enable_xformers_memory_efficient_attention and device=="cuda":
        if is_xformers_available():
            model.enable_xformers_memory_efficient_attention()
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")


    video_input, reserve_frames = get_input(image_inp, args)
    video_input = video_input.to(device).unsqueeze(0)
    mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device)
    masked_video = video_input * (mask == 0)
    prompt = prompt + args.additional_prompt
    video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
    video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
    torchvision.io.write_video(os.path.join(args.save_img_path,  prompt+ '.mp4'), video_, fps=8)

    
    return os.path.join(args.save_img_path,  prompt+ '.mp4')



# def clean():
    # return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
    # return gr.Video.update(value=None)


title = """
    <div style="text-align: center; max-width: 700px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
            SEINE: Image-to-Video generation
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Apply SEINE to generate a video 
        </p>
    </div>
"""



with gr.Blocks(css='style.css') as demo:
    gr.Markdown("<font color=red size=10><center>SEINE: Image-to-Video generation</center></font>")
    gr.Markdown(
        """<div style="text-align:center">
        [<a href="https://arxiv.org/abs/2310.20700">Arxiv Report</a>] | [<a href="https://vchitect.github.io/SEINE-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/SEINE">Github</a>]</div>
        """
    )
    with gr.Column(elem_id="col-container"):
        # gr.HTML(title)
        
        with gr.Row():
            with gr.Column():
                image_inp = gr.Image(type='filepath')
                
            with gr.Column():
                
                prompt = gr.Textbox(label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in")
                
                with gr.Row():
                    # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
                    ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
                    seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=250, elem_id="seed-in")
                with gr.Row():
                    width = gr.Slider(label='width',minimum=1,maximum=2000,value=512,step=1)
                    height = gr.Slider(label='height',minimum=1,maximum=2000,value=320,step=1)
                # ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
                
               
                
                submit_btn = gr.Button("Generate video")
                # clean_btn = gr.Button("Clean video")

        video_out = gr.Video(label="Video result", elem_id="video-output", width = 800)
        inputs = [prompt,image_inp, seed_inp, ddim_steps,width,height]
        outputs = [video_out]
        ex = gr.Examples(
            examples = [["./The_picture_shows_the_beauty_of_the_sea_.jpg","A video of the beauty of the sea",123,250,560,240],
                        ["./The_picture_shows_the_beauty_of_the_sea.png","A video of the beauty of the sea",123,250,560,240],
                        ["./Close-up_essence_is_poured_from_bottleKodak_Vision.png","A video of close-up essence is poured from bottleKodak Vision",123,250,560,240]],
            fn = infer,
            inputs = [image_inp, prompt, seed_inp, ddim_steps,width,height],
            outputs=[video_out],
            cache_examples=False


        )
        ex.dataset.headers = [""]
       
    # control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
    # clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
    submit_btn.click(infer, inputs, outputs)
    # share_button.click(None, [], [], _js=share_js)


demo.queue(max_size=12).launch()