Halong Embedding
This is a sentence-transformers model finetuned from hiieu/halong_embedding on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: hiieu/halong_embedding
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: vi
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("vankha/asc_embedding")
# Run inference
sentences = [
'Sau khi đã tạo phòng ban, ta tiến hành thêm mới thông tin kế toán.. Các bước thực hiện: Chọn **Nhận sự → Quản lý nhân sự → Danh sách nhân sự** Nhấn nút icon_plus.png để thêm mới thông tin nhân sự. Nhấn nút để chỉnh sửa thông tin nhân sự. Nhấn nút để xóa phòng ban.',
'Hướng dẫn tạo thông tin kế toán?',
'Hướng dẫn đổ công nợ cho học sinh?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
cosine_accuracy@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_accuracy@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_accuracy@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_precision@1 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
cosine_precision@3 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.3333 |
cosine_precision@5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
cosine_precision@10 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
cosine_recall@1 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
cosine_recall@3 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_recall@5 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_recall@10 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
cosine_ndcg@10 | 0.9262 | 0.9262 | 0.9262 | 0.9 | 0.9 |
cosine_mrr@10 | 0.9 | 0.9 | 0.9 | 0.8667 | 0.8667 |
cosine_map@100 | 0.9 | 0.9 | 0.9 | 0.8667 | 0.8667 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 42 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 42 samples:
positive anchor type string string details - min: 52 tokens
- mean: 190.43 tokens
- max: 329 tokens
- min: 4 tokens
- mean: 13.26 tokens
- max: 56 tokens
- Samples:
positive anchor Các bước thực hiện: Chọn Tài chính học vụ → Báo cáo chi → Báo cáo chi tiết miễn giảm để hiển thị danh sách miễn giảm điều kiện lọc. Nhấn nút icon_excel.png để tải báo cáo danh sách miễn giảm học sinh.
Hướng dẫn báo cáo chi tiết miễn giảm?
Chức năng này dùng để cấu hình các ngày nghỉ mặc định cho từng khoản thu dịch vụ các khối lớp. Các bước thực hiện: Chọn Tài chính học vụ → Cấu hình → Lịch nghĩ Thiết lập ngày nghỉ mặc định cho từng khối lớp Mỗi khối lớp có ngày nghỉ trong tuần khác nhau, ví dụ: Khối lớp 6 chỉ đăng ký ăn từ thứ 2 đến thứ 5, Khối lớp 7 đăng ký ăn từ thứ 2 đến thứ 6. Để thiết lập ngày nghỉ mặc định cho từng khối lớp, kế toán nhấn nút chọn các thông tin cần thiết, sau đó nhấn nút. Ghi chú: Thiết lập ngày nghỉ mặc định cho từng khối lớp
Hướng dẫn thiết lập nghĩ lễ?
Các bước thực hiện: Chọn Hệ thống → Phân quyền → Quản ký nhóm người dùng Nhấn nút icon_plus.png để thêm mới để tạo nhóm người dùng (nên để tên nhóm là “Kế toán – Trường THCS ABC”). Nhấn nút icon_pencil.png để chỉnh sửa tên nhóm người dùng.
Hướng dẫn tạo nhóm quyền?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|
0 | 0 | 0.9262 | 0.9262 | 0.9262 | 0.9 | 0.9 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 47
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for vankha/asc_embedding
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.800
- Cosine Accuracy@3 on dim 768self-reported1.000
- Cosine Accuracy@5 on dim 768self-reported1.000
- Cosine Accuracy@10 on dim 768self-reported1.000
- Cosine Precision@1 on dim 768self-reported0.800
- Cosine Precision@3 on dim 768self-reported0.333
- Cosine Precision@5 on dim 768self-reported0.200
- Cosine Precision@10 on dim 768self-reported0.100
- Cosine Recall@1 on dim 768self-reported0.800
- Cosine Recall@3 on dim 768self-reported1.000