9000

This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0880
  • Model Preparation Time: 0.0086
  • Bleu Msl: 0
  • Bleu Asl: 94.8306
  • Ter Msl: 100
  • Ter Asl: 2.0392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Bleu Msl Bleu Asl Ter Msl Ter Asl
No log 1.0 225 1.5057 0.0086 3.4312 40.2396 138.8368 49.3827
No log 2.0 450 0.9414 0.0086 43.1631 77.5441 43.8086 10.6428
1.758 3.0 675 0.5891 0.0086 61.0038 80.8049 28.1426 9.3231
1.758 4.0 900 0.4139 0.0086 70.0708 82.7822 21.4822 8.5568
0.6307 5.0 1125 0.3424 0.0086 73.0973 84.9287 19.5122 7.4500
0.6307 6.0 1350 0.3031 0.0086 77.0881 85.4456 16.1351 7.2371
0.3312 7.0 1575 0.2739 0.0086 79.0160 86.5112 14.9156 6.5986
0.3312 8.0 1800 0.2371 0.0086 79.2335 88.2693 13.9775 5.7897
0.2277 9.0 2025 0.2023 0.0086 79.0969 88.0941 13.5084 5.7471
0.2277 10.0 2250 0.1852 0.0086 81.0394 89.1417 13.0394 5.3640
0.2277 11.0 2475 0.1766 0.0086 81.7216 89.4270 12.1951 5.2363
0.1457 12.0 2700 0.1697 0.0086 81.9087 89.6539 12.2889 5.1511
0.1457 13.0 2925 0.1650 0.0086 81.8769 90.3167 12.0075 4.8106
0.1098 14.0 3150 0.1611 0.0086 82.2782 90.6362 11.6323 4.6403
0.1098 15.0 3375 0.1571 0.0086 81.9278 90.5687 11.3508 4.5977
0.0881 16.0 3600 0.1553 0.0086 83.3952 90.2462 10.7880 4.6828
0.0881 17.0 3825 0.1536 0.0086 83.1846 91.0621 10.8818 4.3423
0.0758 18.0 4050 0.1526 0.0086 82.4210 90.7751 11.2570 4.4700
0.0758 19.0 4275 0.1518 0.0086 82.6316 91.2367 10.7880 4.2997
0.065 20.0 4500 0.1499 0.0086 84.1579 91.7880 10.6004 4.0443
0.065 21.0 4725 0.1502 0.0086 83.1962 91.3530 10.3189 4.2571
0.065 22.0 4950 0.1500 0.0086 84.3437 91.5042 10.5066 4.1294
0.0577 23.0 5175 0.1495 0.0086 85.7608 91.8155 9.7561 4.0443
0.0577 24.0 5400 0.1490 0.0086 85.2304 91.9526 9.9437 3.9591
0.0533 25.0 5625 0.1491 0.0086 85.0375 91.4621 10.1313 4.1294
0.0533 26.0 5850 0.1482 0.0086 85.5992 91.4082 9.9437 4.1294
0.0489 27.0 6075 0.1484 0.0086 85.4254 91.6413 10.0375 4.0443
0.0489 28.0 6300 0.1483 0.0086 85.1178 91.6413 9.8499 4.0443
0.0481 29.0 6525 0.1482 0.0086 85.6291 91.3593 9.7561 4.2146
0.0481 30.0 6750 0.1481 0.0086 85.6291 91.2431 9.7561 4.2571

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
28
Safetensors
Model size
61.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for vania2911/9000

Finetuned
(15)
this model