8_6kmslsamples

This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4729
  • Bleu Msl: 77.3631
  • Bleu Asl: 0
  • Ter Msl: 11.9346
  • Ter Asl: 100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Msl Bleu Asl Ter Msl Ter Asl
No log 1.0 217 0.2646 21.2021 84.6183 57.1279 8.2427
No log 2.0 434 0.1929 17.6495 84.9583 34.5912 7.4059
0.4655 3.0 651 0.1742 67.4481 89.3963 19.9161 5.7531
0.4655 4.0 868 0.1567 63.4679 86.5311 24.6855 7.8243
0.0791 5.0 1085 0.1559 63.5398 82.6386 21.5933 9.6234
0.0791 6.0 1302 0.1548 73.9641 86.8345 17.8721 8.1172
0.0421 7.0 1519 0.1606 70.5606 88.7113 16.7715 5.8368
0.0421 8.0 1736 0.1556 35.3257 86.5104 30.7652 7.4686
0.0421 9.0 1953 0.1564 66.0661 85.8235 22.6415 8.2636
0.0269 10.0 2170 0.1584 68.5372 88.0956 20.1782 6.7364
0.0269 11.0 2387 0.1641 64.1749 89.0674 22.8512 5.8996
0.0178 12.0 2604 0.1668 72.4073 88.8679 16.5094 6.0460
0.0178 13.0 2821 0.1663 63.9882 86.2327 18.7107 8.8285
0.0136 14.0 3038 0.1646 73.1200 88.9404 17.1908 6.2343
0.0136 15.0 3255 0.1726 66.6138 87.2488 18.6583 6.9874
0.0136 16.0 3472 0.1716 54.0153 87.6643 22.4843 6.4644
0.0101 17.0 3689 0.1680 65.4861 88.5112 16.5618 5.7531
0.0101 18.0 3906 0.1733 72.5027 88.9905 17.1384 5.8787
0.0078 19.0 4123 0.1701 69.9889 85.8965 18.7631 8.7029
0.0078 20.0 4340 0.1775 69.8437 88.9591 17.6101 6.1297
0.0051 21.0 4557 0.1731 72.1034 88.3815 18.0818 6.5900
0.0051 22.0 4774 0.1744 69.9773 89.2154 17.0860 5.7531
0.0051 23.0 4991 0.1711 72.3725 90.1699 15.6709 5.3975
0.0059 24.0 5208 0.1715 69.6558 89.0297 17.4004 6.1297
0.0059 25.0 5425 0.1710 69.6504 87.9393 17.6101 7.2594
0.0041 26.0 5642 0.1730 62.5723 87.0114 18.2914 8.3473
0.0041 27.0 5859 0.1727 65.0893 88.5422 17.0860 6.9456
0.0031 28.0 6076 0.1725 70.9388 88.1427 16.7191 7.3222
0.0031 29.0 6293 0.1705 70.5254 88.4779 16.8239 6.9456
0.0027 30.0 6510 0.1707 71.1488 88.5933 16.7715 6.9038

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
25
Safetensors
Model size
61.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for vania2911/8_6kmslsamples

Finetuned
(15)
this model