2661

This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4495
  • Bleu Msl: 0.0
  • Bleu 1 Msl: 0.7593
  • Bleu 2 Msl: 0.0161
  • Bleu 3 Msl: 0.0047
  • Bleu 4 Msl: 0.0023
  • Ter Msl: 100
  • Bleu Asl: 0
  • Bleu 1 Asl: 0
  • Bleu 2 Asl: 0
  • Bleu 3 Asl: 0
  • Bleu 4 Asl: 0
  • Ter Asl: 100

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Msl Bleu 1 Msl Bleu 2 Msl Bleu 3 Msl Bleu 4 Msl Ter Msl Bleu Asl Bleu 1 Asl Bleu 2 Asl Bleu 3 Asl Bleu 4 Asl Ter Asl
No log 1.0 67 0.4200 42.7287 0.6604 0.0111 0.0030 0.0014 100 0 0 0 0 0 100
No log 2.0 134 0.3958 50.8133 0.7186 0.0116 0.0031 0.0015 100 0 0 0 0 0 100
No log 3.0 201 0.3869 70.7107 0.7317 0.0117 0.0031 0.0015 100 0 0 0 0 0 100
No log 4.0 268 0.3764 70.7107 0.7336 0.0117 0.0031 0.0015 100 0 0 0 0 0 100
No log 5.0 335 0.3818 50.8133 0.7261 0.0117 0.0031 0.0015 100 0 0 0 0 0 100
No log 6.0 402 0.3615 50.8133 0.7467 0.0118 0.0032 0.0015 100 0 0 0 0 0 100
No log 7.0 469 0.3790 50.8133 0.7336 0.0117 0.0031 0.0015 100 0 0 0 0 0 100
0.1217 8.0 536 0.3946 50.0000 0.7411 0.0118 0.0031 0.0015 100 0 0 0 0 0 100
0.1217 9.0 603 0.4057 45.1801 0.7448 0.0118 0.0032 0.0015 100 0 0 0 0 0 100
0.1217 10.0 670 0.3968 70.7107 0.7392 0.0118 0.0031 0.0015 100 0 0 0 0 0 100
0.1217 11.0 737 0.4003 70.7107 0.7411 0.0118 0.0031 0.0015 100 0 0 0 0 0 100
0.1217 12.0 804 0.3982 70.7107 0.7561 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.1217 13.0 871 0.4016 70.7107 0.7486 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.1217 14.0 938 0.4065 50.8133 0.7542 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 15.0 1005 0.3989 50.0000 0.7561 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 16.0 1072 0.4009 50.0000 0.7523 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 17.0 1139 0.4154 50.0000 0.7505 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 18.0 1206 0.4111 70.7107 0.7411 0.0118 0.0031 0.0015 100 0 0 0 0 0 100
0.0287 19.0 1273 0.4163 70.7107 0.7448 0.0118 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 20.0 1340 0.4134 70.7107 0.7542 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 21.0 1407 0.4165 70.7107 0.7542 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0287 22.0 1474 0.4120 50.0000 0.7486 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 23.0 1541 0.4199 50.0000 0.7467 0.0118 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 24.0 1608 0.4200 50.0000 0.7523 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 25.0 1675 0.4226 70.7107 0.7523 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 26.0 1742 0.4199 70.7107 0.7542 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 27.0 1809 0.4216 70.7107 0.7523 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 28.0 1876 0.4225 50.8133 0.7542 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0132 29.0 1943 0.4232 50.8133 0.7523 0.0119 0.0032 0.0015 100 0 0 0 0 0 100
0.0087 30.0 2010 0.4235 50.8133 0.7523 0.0119 0.0032 0.0015 100 0 0 0 0 0 100

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
61.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for vania2911/2661

Finetuned
(15)
this model