2661
This model is a fine-tuned version of Helsinki-NLP/opus-mt-es-es on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4495
- Bleu Msl: 0.0
- Bleu 1 Msl: 0.7593
- Bleu 2 Msl: 0.0161
- Bleu 3 Msl: 0.0047
- Bleu 4 Msl: 0.0023
- Ter Msl: 100
- Bleu Asl: 0
- Bleu 1 Asl: 0
- Bleu 2 Asl: 0
- Bleu 3 Asl: 0
- Bleu 4 Asl: 0
- Ter Asl: 100
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu Msl | Bleu 1 Msl | Bleu 2 Msl | Bleu 3 Msl | Bleu 4 Msl | Ter Msl | Bleu Asl | Bleu 1 Asl | Bleu 2 Asl | Bleu 3 Asl | Bleu 4 Asl | Ter Asl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 67 | 0.4200 | 42.7287 | 0.6604 | 0.0111 | 0.0030 | 0.0014 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
No log | 2.0 | 134 | 0.3958 | 50.8133 | 0.7186 | 0.0116 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
No log | 3.0 | 201 | 0.3869 | 70.7107 | 0.7317 | 0.0117 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
No log | 4.0 | 268 | 0.3764 | 70.7107 | 0.7336 | 0.0117 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
No log | 5.0 | 335 | 0.3818 | 50.8133 | 0.7261 | 0.0117 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
No log | 6.0 | 402 | 0.3615 | 50.8133 | 0.7467 | 0.0118 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
No log | 7.0 | 469 | 0.3790 | 50.8133 | 0.7336 | 0.0117 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 8.0 | 536 | 0.3946 | 50.0000 | 0.7411 | 0.0118 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 9.0 | 603 | 0.4057 | 45.1801 | 0.7448 | 0.0118 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 10.0 | 670 | 0.3968 | 70.7107 | 0.7392 | 0.0118 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 11.0 | 737 | 0.4003 | 70.7107 | 0.7411 | 0.0118 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 12.0 | 804 | 0.3982 | 70.7107 | 0.7561 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 13.0 | 871 | 0.4016 | 70.7107 | 0.7486 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.1217 | 14.0 | 938 | 0.4065 | 50.8133 | 0.7542 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 15.0 | 1005 | 0.3989 | 50.0000 | 0.7561 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 16.0 | 1072 | 0.4009 | 50.0000 | 0.7523 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 17.0 | 1139 | 0.4154 | 50.0000 | 0.7505 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 18.0 | 1206 | 0.4111 | 70.7107 | 0.7411 | 0.0118 | 0.0031 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 19.0 | 1273 | 0.4163 | 70.7107 | 0.7448 | 0.0118 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 20.0 | 1340 | 0.4134 | 70.7107 | 0.7542 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 21.0 | 1407 | 0.4165 | 70.7107 | 0.7542 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0287 | 22.0 | 1474 | 0.4120 | 50.0000 | 0.7486 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 23.0 | 1541 | 0.4199 | 50.0000 | 0.7467 | 0.0118 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 24.0 | 1608 | 0.4200 | 50.0000 | 0.7523 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 25.0 | 1675 | 0.4226 | 70.7107 | 0.7523 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 26.0 | 1742 | 0.4199 | 70.7107 | 0.7542 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 27.0 | 1809 | 0.4216 | 70.7107 | 0.7523 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 28.0 | 1876 | 0.4225 | 50.8133 | 0.7542 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0132 | 29.0 | 1943 | 0.4232 | 50.8133 | 0.7523 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
0.0087 | 30.0 | 2010 | 0.4235 | 50.8133 | 0.7523 | 0.0119 | 0.0032 | 0.0015 | 100 | 0 | 0 | 0 | 0 | 0 | 100 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for vania2911/2661
Base model
Helsinki-NLP/opus-mt-es-es