Remeber this model is for illustration and knowlwdge Purpose. I have only used online freely available materials in whole process.
Model Details
This Model is Trained on Custum data related to Sales interactive conversations as Array of objects having Instruction and Response as Keys. -Parameters: ~8 Billion -Quantization: 4 Bit (Q-LORA)
Model Description
This is the model card of a 馃 transformers model that has been pushed on the Hub.
- Trained by: [vakodiya] [Viru Akodiya]
- Model type: [Text-Generation]
- License: [apache-2.0]
- Finetuned from model: [meta-llama/Llama-3.1-8B-Instruct]
Training Data
Training Data is specifically generated by me to train to my use case. It consits of Just 500 examples, so to increase dataset size, duplicated the original data and makes it 1000.
Training Hyperparameters
- Hardware Type: [Kaggle's GPU T4X2]
- Time used: [37 Minutes]
- Cloud Provider: [Kaggle]
INFERENCE (It will need GPU)
Install Dependencies
%%capture
!pip install transformers accelerate bitsandbytes
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline, AutoConfig
import torch
Load model and Tokenizer
model_name = "vakodiya/Llama-3-8B-instruct-4bit-salesbot"
config = AutoConfig.from_pretrained(model_name)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16,
)
# Model evaluation mode
model.eval()
Creating Inference Point
def Trained_Llama3_1_inference(prompt):
model.eval()
conversation=[
{"role": "user", "content": prompt},
]
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt", padding=True, truncation=True, return_attention_mask=True)
if input_ids.shape[1] > 8192:
input_ids = input_ids[:, -8192:]
return "Input tokens more than 8k"
inputs = input_ids.to(model.device)
attention_mask = torch.ones_like(inputs, dtype=torch.long)
final_prompt=tokenizer.decode(inputs[0])
outputs = model.generate(inputs, max_new_tokens=256, temperature=0.4,attention_mask=attention_mask,pad_token_id=tokenizer.pad_token_id)
response = tokenizer.decode(outputs[0])
final_response= response.replace(final_prompt,"").replace('<|eot_id|>',"") # Exclude prompt from response
return final_response
Invoking Inference
Trained_Llama3_1_inference("What are qualities of good Sales-person ?")
----------End of Inferece --------------------
---------- Start of Training -----------------
Training (on Kaggle Notebook)
This training is done on Kaggle Notebook enabling GPU(Required in quantized training/ inference).
Install Dependencies
%%capture
!pip install -U transformers[torch] datasets
!pip install -q bitsandbytes trl peft accelerate
!pip install flash-attn --no-build-isolation
!pip install huggingface_hub
Import Modules
from transformers import BitsAndBytesConfig, AutoTokenizer, AutoModelForCausalLM, TrainingArguments
from trl import SFTTrainer
from peft import LoraConfig
from huggingface_hub import notebook_login
import torch
from huggingface_hub import login
from datasets import Dataset
from kaggle_secrets import UserSecretsClient
import os
Remember to generate a Token with edit access on HuggingFace and add it as secret in Kaggle Notebook
hf_token = UserSecretsClient().get_secret("HF_TOKEN_LLAMA3")
login(token = hf_token)
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # Use only GPU 0
Remember to Customize your own data with at least 1000 examples.
Data_examples = [{"instruction":"Who has taken oath as Prime minister of India in 2024", "response":" Shri Narendra Modi has taken oath as Prime minister of india on 9th June 2024. He is now become prime minister having 3 consecutive terms."},
...................................................................................,]
Process data to stringify only the text
field
processed_data = []
for example in Data_examples :
processed_data.append({'text':f"{example['instruction']} \n {example['response']}"})
# Create a Dataset from the list of dictionaries
dataset = Dataset.from_list(processed_data)
# Split into train and test Data sets
dataset = dataset.train_test_split(test_size=0.01)
# Access train and test splits
train_dataset = dataset['train']
test_dataset = dataset['test']
Firstly add model to Kaggle notebook navigating to Add Input and Add LLama3.1 8 B in out Notebook
model_path="/kaggle/input/llama-3.1/transformers/8b-instruct/2" # Change it according to your model path in Notebook
trained_model_name = "Llama-3-8B-instruct-4bit-finetuned"
output_dir = 'kaggle/working/' + trained_model_name
For 4 bit quantization (Q-LoRA) set Configs
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,)
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
Load the Model and Tokenizer and set pad token
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
quantization_config=quantization_config,
device_map="auto")
# Use eos_token as pad_token
tokenizer.pad_token = tokenizer.eos_token
Set Training configurations
training_args = TrainingArguments(
fp16=False, # specify bf16=True instead when training on GPUs that support bf16 else fp16
bf16=True,
do_eval=True,
eval_strategy="epoch",
gradient_accumulation_steps=4,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
learning_rate=2.0e-05,
log_level="info",
logging_steps=5,
logging_strategy="steps",
lr_scheduler_type="cosine",
max_steps=-1,
num_train_epochs=1, # Number of times training will go through with same dataset.
output_dir=output_dir,
overwrite_output_dir=True,
per_device_eval_batch_size=8, # You can reduce if out-of memory errors occurs
per_device_train_batch_size=8, # You can reduce if out-of memory errors occurs
report_to="none", # for skipping wandb logging
save_strategy="no",
save_total_limit=None,
)
Set-up Trainer (Supervised-fine-tuning)
trainer = SFTTrainer(
model=model, # Use above quantized model
args=training_args,
train_dataset=train_dataset, # If Training Fails Try to reduce Dataset Size
eval_dataset=test_dataset,
dataset_text_field="text",
tokenizer=tokenizer,
packing=False, # Setting it True will Reduce dataset size as it will exclude similar examples occuring repetitive
peft_config=peft_config,
max_seq_length=1024,
)
Note: It may take long Time to train model (several minutes to Hours) depending on your dataset size
# To clear out cache for unsuccessful run
torch.cuda.empty_cache()
train_result = trainer.train()
Save model in Notebook (in output_directory)
trainer.save_model()
Merge LoRA with the base model and save the merged model
merged_model = trainer.model.merge_and_unload()
merged_model.save_pretrained("merged_model",safe_serialization=True)
tokenizer.save_pretrained("merged_model")
push merged model to the HuggingFace-hub (You must have logged in already)
merged_model.push_to_hub("username/model_name")
tokenizer.push_to_hub("username/model_name")
------------------- End of Training and uploading trained model on our huggingface Space ----------------------------------
- Downloads last month
- 15
Model tree for vakodiya/Llama-3-8B-instruct-4bit-salesbot
Base model
meta-llama/Llama-3.1-8B