Edit model card

Generate SQL from text - Squeal

Please use the code below as an example for how to use this model.

import torch
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

def load_model(model_name):
    # Load tokenizer and model with QLoRA configuration
    compute_dtype = getattr(torch, 'float16')

    bnb_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type='nf4',
        bnb_4bit_compute_dtype=compute_dtype,
        bnb_4bit_use_double_quant=False,
    )

    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_map={"": 0},
        quantization_config=bnb_config
    )


    # Load Tokenizer
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"

    return model, tokenizer

model, tokenizer = load_model('vagmi/squeal')

prompt = "<s>[INST] Output SQL for the given table structure \n \
  CREATE TABLE votes (contestant_number VARCHAR, num_votes int); \
  CREATE TABLE contestants (contestant_number VARCHAR, contestant_name VARCHAR); \
  What is the contestant number and name of the contestant who got least votes?[/INST]"
pipe = pipeline(task="text-generation", 
                model=model, 
                tokenizer=tokenizer, 
                max_length=200,
                device_map='auto', )
result = pipe(prompt)
print(result[0]['generated_text'][len(prompt):-1])

How I built it?

Watch me build this model.

https://www.youtube.com/watch?v=PNFhAfxR_d8

Here is the notebook I used to train this model.

https://colab.research.google.com/drive/1jYX8AlRMTY7F_dH3hCFM4ljg5qEmCoUe#scrollTo=IUILKaGWhBxS

Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train vagmi/squeal