metadata
license: cc-by-nc-4.0
language:
- hu
metrics:
- accuracy
- f1
model-index:
- name: huBERTPlain
results:
- task:
type: text-classification
metrics:
- type: accuracy
value: 0.74
- type: f1
value: 0.74
widget:
- text: "Az egységes gyakorlati alkalmazás érdekében, illetve abból a célból, hogy a független kisüzemi termelői státuszt valamennyi tagállamban könnyebben elismerjék a Bizottság 2022. január 1-jével kezdődően uniós végrehajtási rendeletben határozta meg: egységes űrlap rendszeresítésével a tanúsítvány formáját, tartalmát és a kiállítására vonatkozó részlet szabályokat; a tanúsítvány meghatározott adatainak a 2008/118/EK irányelv IV. fejezete szerinti szállításához szükséges adminisztratív okmányban, azaz az Adminisztratív kísérőokmányon (NAV_VP_IE815 jelű nyomtatvány) történő szerepeltetését; a tanúsítvány meghatározott adatainak 2008/118/EK\_irányelv V. fejezete szerinti szállításához szükséges adminisztratív okmányban, azaz az Egyszerűsített Kísérő Okmányon (NAV_VP_HU815e jelű nyomtatvány) történő szerepeltetését."
example_title: Incomprehensible
- text: >-
Az AEO-engedély birtokosainak listáján – keresésre – megjelenő
információk: az engedélyes neve, az engedélyt kibocsátó ország, az
engedély típusa.
exmaple_title: Comprehensible
Model description
Cased fine-tuned BERT model for Hungarian, trained on a dataset provided by National Tax and Customs Administration - Hungary (NAV): Public Accessibilty Programme. Refined version of the huBERTPlain ('uvegesistvan/huBERTPlain') model. Trainig data cleaned further:
- Minor corrections in sentence segmentation results.
- Train data filtered: sentence pairs (original - rephrased) filtered out in each document, where two sentences' Levenstein distance was less then 3. These assumed to be spelling corrections, therefore potentially less helpful for Plain Language classification.
Intended uses & limitations
The model can be used as any other (cased) BERT model. It has been tested recognizing "accessible" and "original" sentences, where:
- "accessible" - "Label_0": sentence, that can be considered as comprehensible (regarding to Plain Language directives)
- "original" - "Label_1": sentence, that needs to rephrased in order to follow Plain Language Guidelines.
Training
Fine-tuned version of the original huBERT model (SZTAKI-HLT/hubert-base-cc
), trained on information materials provided by NAV linguistic experts.
Eval results
Class | Precision | Recall | F-Score |
---|---|---|---|
Accessible / Label_0 | 0.75 | 0.72 | 0.73 |
Original / Label_1 | 0.74 | 0.77 | 0.75 |
accuracy | 0.74 | ||
macro avg | 0.74 | 0.74 | 0.74 |
weighted avg | 0.74 | 0.74 | 0.74 |
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/huBERTPlain_v2")
model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/huBERTPlain_v2")
BibTeX entry and citation info
If you use the model, please cite the following dissertation (to be submitted for workshop discussion):
Bibtex:
@PhDThesis{ Uveges:2024,
author = {{"U}veges, Istv{\'a}n},
title = {K{\"o}z{\'e}rthet{\"o} és automatiz{\'a}ci{\'o} - k{\'i}s{\'e}rletek a jog, term{\'e}szetesnyelv-feldolgoz{\'a}s {\'e}s informatika hat{\'a}r{\'a}n.},
year = {2024},
school = {Szegedi Tudom{\'a}nyegyetem}
}