metadata
language:
- en
library_name: transformers
pipeline_tag: text-generation
datasets:
- jondurbin/airoboros-2.2
- Open-Orca/OpenOrca
- garage-bAInd/Open-Platypus
- WizardLM/WizardLM_evol_instruct_V2_196k
- TokenBender/python_eval_instruct_51k
tags:
- llama-2
- code
license: llama2
model-index:
- name: SpeechlessCoder
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 51.829
verified: false
speechless-tora-code-7b-v1.0
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
Code: https://github.com/uukuguy/speechless
Use the following dataset to fine-tune llm_agents/tora-code-7b-v1.0 in order to improve the model's reasoning and planning abilities.
Total 201,981 samples.
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
- garage-bAInd/Open-Platypus: 100%, 24,926 samples.
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
- Spider: 8,659 samples
How to Prompt the Model
This model accepts the Alpaca instruction format.
For example:
You are an intelligent programming assistant.
### Instruction:
Implement a linked list in C++
### Response:
HumanEval
Metric | Value |
---|---|
humaneval-python | 51.829 |
CodeLlama-34B-Python: 53.29
CodeLlama-34B-Instruct: 50.79
CodeLlama-13B-Instruct: 50.6
CodeLlama-34B: 45.11
CodeLlama-13B-Python: 42.89
CodeLlama-13B: 35.07
LM-Evaluation-Harness
Metric | Value |
---|---|
ARC | 42.66 |
HellaSwag | 65.16 |
MMLU | 38.56 |
TruthfulQA | 42.06 |
Average | 47.11 |
Parameters
lr | 2e-4 |
lr_scheduler_type | cosine |
weight_decay | 0.0 |
optim | paged_adamw_8bit |
flash_attention | True |
rerope | False |
max_new_tokens | 4096 |
num_train_epochs | 2 |
bits | 4 |
lora_r | 64 |
lora_alpha | 16 |
lora_dropout | 0.05 |
double_quant | True |
quant_type | nf4 |
dataset_format | airoboros |
mini_batch_size | 2 |
grandient_accumulation_steps | 32 |
bf16 | True |
A800-80G x 2
epoch | 2.0 |
etrain_loss | 0.5891 |
etrain_runtime | 19:24:49.43 |
etrain_samples_per_second | 5.664 |
etrain_steps_per_second | 0.044 |
eeval_loss | 0.5872 |
eeval_runtime | 0:00:15.59 |
eeval_samples_per_second | 12.822 |
eeval_steps_per_second | 6.411 |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 40.1 |
ARC (25-shot) | 42.66 |
HellaSwag (10-shot) | 65.16 |
MMLU (5-shot) | 38.56 |
TruthfulQA (0-shot) | 42.06 |
Winogrande (5-shot) | 62.9 |
GSM8K (5-shot) | 0.91 |
DROP (3-shot) | 28.48 |