speechless-instruct-mistral-7b-v0.2
Code: https://github.com/uukuguy/speechless
Use the following dataset to fine-tune mistralai/Mistral-7B-v0.2 in order to improve the model's reasoning and planning abilities.
Total 201,981 samples.
- jondurbin/airoboros-2.2: Filter categories related to coding, reasoning and planning. 23,462 samples.
- Open-Orca/OpenOrca: Filter the 'cot' category in 1M GPT4 dataset. 74,440 samples.
- garage-bAInd/Open-Platypus: 100%, 24,926 samples.
- WizardLM/WizardLM_evol_instruct_V2_196k: Coding coversation part. 30,185 samples
- TokenBender/python_eval_instruct_51k: “python” in output .40,309 samples
- Spider: 8,659 samples
How to Prompt the Model
This model accepts the Alpaca instruction format.
For example:
You are an intelligent programming assistant.
### Instruction:
Implement a linked list in C++
### Response:
HumanEval
Metric | Value |
---|---|
humaneval-python |
Big Code Models Leaderboard](https://huggingface.co./spaces/bigcode/bigcode-models-leaderboard)
CodeLlama-34B-Python: 53.29
CodeLlama-34B-Instruct: 50.79
CodeLlama-13B-Instruct: 50.6
CodeLlama-34B: 45.11
CodeLlama-13B-Python: 42.89
CodeLlama-13B: 35.07
Metric | Value |
---|---|
ARC | 58.79 |
HellaSwag | 81.89 |
MMLU | 61.27 |
TruthfulQA | 49.85 |
Winoground | 78.22 |
GSM8K | 56.33 |
Average | 64.39 |
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.