Tora based Models
Collection
3 items
•
Updated
•
1
Use the following dataset to fine-tune llm_agents/tora-code-7b-v1.0 in order to improve the model's reasoning and planning abilities.
context window length: 16,384 prompt_type = "alpaca" max_tokens > 128 && < 16384
Total 177,333 samples 316 MB
50 samples/T=0.2/MaxTokens=512/Top_P=0.95
Code: https://github.com/uukuguy/speechless
This model accepts the Alpaca instruction format.
For example:
You are an intelligent programming assistant.
### Instruction:
Implement a linked list in C++
### Response:
Metric | Value |
---|---|
humaneval-python | 52.44 |
CodeLlama-34B-Python: 53.29
CodeLlama-34B-Instruct: 50.79
CodeLlama-13B-Instruct: 50.6
CodeLlama-34B: 45.11
CodeLlama-13B-Python: 42.89
CodeLlama-13B: 35.07
Metric | Value |
---|---|
python | 55.96 |
java | 37.84 |
javascript | 46.93 |
cpp | 37.48 |
rust | 29.01 |
go | 28.99 |
sh | 12.11 |
julia | 31.47 |
typescript | 47.80 |
Metric | Value |
---|---|
ARC | |
HellaSwag | |
MMLU | |
TruthfulQA | |
Average |
lr | 2e-4 |
lr_scheduler_type | cosine |
weight_decay | 0.0 |
optim | paged_adamw_8bit |
flash_attention | True |
rerope | False |
max_new_tokens | 16384 |
num_train_epochs | 2 |
bits | 4 |
lora_r | 64 |
lora_alpha | 256 |
lora_dropout | 0.05 |
double_quant | True |
quant_type | nf4 |
dataset_format | sharegpt |
mini_batch_size | 2 |
grandient_accumulation_steps | 32 |
bf16 | True |
A100-40G x 4