|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: segformer-class-classWeights-augmentation |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9655172413793104 |
|
- name: F1 |
|
type: f1 |
|
value: 0.964683592269799 |
|
- name: Precision |
|
type: precision |
|
value: 0.9674329501915708 |
|
- name: Recall |
|
type: recall |
|
value: 0.9655172413793104 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segformer-class-classWeights-augmentation |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1855 |
|
- Accuracy: 0.9655 |
|
- F1: 0.9647 |
|
- Precision: 0.9674 |
|
- Recall: 0.9655 |
|
- Learning Rate: 0.0000 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 10 |
|
- eval_batch_size: 10 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 40 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Rate | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:| |
|
| No log | 0.89 | 6 | 0.1113 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.1153 | 1.93 | 13 | 0.0929 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.2246 | 2.96 | 20 | 0.1026 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.2246 | 4.0 | 27 | 0.0391 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.1433 | 4.89 | 33 | 0.0673 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.1816 | 5.93 | 40 | 0.0794 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.1816 | 6.96 | 47 | 0.0687 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.1448 | 8.0 | 54 | 0.1123 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
| 0.1124 | 8.89 | 60 | 0.1855 | 0.9655 | 0.9647 | 0.9674 | 0.9655 | 0.0000 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|