uonyeka's picture
Add new SentenceTransformer model.
80da2f2 verified
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:1K<n<10K
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
widget:
  - source_sentence: What service does Walmart GoLocal provide?
    sentences:
      - What services does Walmart Connect offer?
      - What is the process for using reinsurers not on the authorized list?
      - What is the principal amount of debt maturing in fiscal year 2023?
  - source_sentence: What is the focus of DaVita Venture Group?
    sentences:
      - What is the main business focus of Eli Lilly and Company?
      - By what percentage did AbbVie's Skyrizi net revenues increase in 2023?
      - What were the net catastrophe losses in U.S. dollars in 2023?
  - source_sentence: What are Kroger’s four strategic pillars?
    sentences:
      - What is the nature of Kroger's business operations?
      - What interest rates are applicable to the notes issued in April 2022?
      - >-
        Proceeds from issuance of long-term debt in 2023 amounted to $872.9
        million.
  - source_sentence: What was the effective tax rate in 2023?
    sentences:
      - What was the effective income tax rate for the Company in 2023?
      - What major restructuring activities were completed by the end of 2023?
      - What are the primary responsibilities of Chubb's Product Boards?
  - source_sentence: The return on equity for 2023 was 27.0%.
    sentences:
      - What was the return on equity for 2023?
      - What was the total net property and equipment as of December 31, 2023?
      - >-
        How does CARB enforce its ZEV mandates and what consequence faces
        non-compliance?
pipeline_tag: sentence-similarity
model-index:
  - name: BGE base Financial Matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.7028571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.84
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8828571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9214285714285714
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7028571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17657142857142855
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09214285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7028571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.84
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8828571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9214285714285714
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8149004529112371
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7804058956916099
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7839215377734133
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.7028571428571428
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8385714285714285
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8871428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9257142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7028571428571428
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2795238095238095
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1774285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09257142857142854
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7028571428571428
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8385714285714285
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8871428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9257142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8152847434616775
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7796893424036281
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7829824429897414
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.7057142857142857
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8328571428571429
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8728571428571429
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9114285714285715
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.7057142857142857
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2776190476190476
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17457142857142854
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09114285714285714
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7057142857142857
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8328571428571429
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8728571428571429
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9114285714285715
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8097167926128003
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7770238095238095
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7810667608834199
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.68
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8285714285714286
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.8671428571428571
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.91
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.68
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.27619047619047615
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1734285714285714
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.091
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.68
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8285714285714286
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8671428571428571
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.91
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7972014326060813
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.760804988662131
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7644398940079736
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.6614285714285715
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.7942857142857143
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.83
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8757142857142857
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6614285714285715
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26476190476190475
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.16599999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08757142857142856
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.6614285714285715
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.7942857142857143
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.83
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8757142857142857
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7702103944866356
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7363231292517006
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.7414139881512513
            name: Cosine Map@100

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("uonyeka/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'The return on equity for 2023 was 27.0%.',
    'What was the return on equity for 2023?',
    'What was the total net property and equipment as of December 31, 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7029
cosine_accuracy@3 0.84
cosine_accuracy@5 0.8829
cosine_accuracy@10 0.9214
cosine_precision@1 0.7029
cosine_precision@3 0.28
cosine_precision@5 0.1766
cosine_precision@10 0.0921
cosine_recall@1 0.7029
cosine_recall@3 0.84
cosine_recall@5 0.8829
cosine_recall@10 0.9214
cosine_ndcg@10 0.8149
cosine_mrr@10 0.7804
cosine_map@100 0.7839

Information Retrieval

Metric Value
cosine_accuracy@1 0.7029
cosine_accuracy@3 0.8386
cosine_accuracy@5 0.8871
cosine_accuracy@10 0.9257
cosine_precision@1 0.7029
cosine_precision@3 0.2795
cosine_precision@5 0.1774
cosine_precision@10 0.0926
cosine_recall@1 0.7029
cosine_recall@3 0.8386
cosine_recall@5 0.8871
cosine_recall@10 0.9257
cosine_ndcg@10 0.8153
cosine_mrr@10 0.7797
cosine_map@100 0.783

Information Retrieval

Metric Value
cosine_accuracy@1 0.7057
cosine_accuracy@3 0.8329
cosine_accuracy@5 0.8729
cosine_accuracy@10 0.9114
cosine_precision@1 0.7057
cosine_precision@3 0.2776
cosine_precision@5 0.1746
cosine_precision@10 0.0911
cosine_recall@1 0.7057
cosine_recall@3 0.8329
cosine_recall@5 0.8729
cosine_recall@10 0.9114
cosine_ndcg@10 0.8097
cosine_mrr@10 0.777
cosine_map@100 0.7811

Information Retrieval

Metric Value
cosine_accuracy@1 0.68
cosine_accuracy@3 0.8286
cosine_accuracy@5 0.8671
cosine_accuracy@10 0.91
cosine_precision@1 0.68
cosine_precision@3 0.2762
cosine_precision@5 0.1734
cosine_precision@10 0.091
cosine_recall@1 0.68
cosine_recall@3 0.8286
cosine_recall@5 0.8671
cosine_recall@10 0.91
cosine_ndcg@10 0.7972
cosine_mrr@10 0.7608
cosine_map@100 0.7644

Information Retrieval

Metric Value
cosine_accuracy@1 0.6614
cosine_accuracy@3 0.7943
cosine_accuracy@5 0.83
cosine_accuracy@10 0.8757
cosine_precision@1 0.6614
cosine_precision@3 0.2648
cosine_precision@5 0.166
cosine_precision@10 0.0876
cosine_recall@1 0.6614
cosine_recall@3 0.7943
cosine_recall@5 0.83
cosine_recall@10 0.8757
cosine_ndcg@10 0.7702
cosine_mrr@10 0.7363
cosine_map@100 0.7414

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 6 tokens
    • mean: 45.2 tokens
    • max: 439 tokens
    • min: 7 tokens
    • mean: 20.41 tokens
    • max: 43 tokens
  • Samples:
    positive anchor
    The cash equities rate per contract (per 100 shares) for NYSE increased by 6%, from $0.045 in 2022 to $0.048 in 2023. What was the change in the rate per contract for NYSE cash equities from 2022 to 2023?
    Item 3 specifies that the information regarding Legal Proceedings is sourced from Note 19 of the Notes to Consolidated Financial Statements included in Item 8. What is the content source for the information requested by Item 3 concerning Legal Proceedings?
    North America's operating income for the fiscal year ended October 1, 2023, was $5,495.7 million, up from $4,486.5 million in fiscal 2022. What was the increase in North America's operating income from fiscal 2022 to fiscal 2023?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.8122 10 1.575 - - - - -
0.9746 12 - 0.7437 0.7623 0.7682 0.7114 0.7652
1.6244 20 0.697 - - - - -
1.9492 24 - 0.7619 0.7760 0.7824 0.7346 0.7826
2.4365 30 0.4724 - - - - -
2.9239 36 - 0.7639 0.7808 0.7831 0.7398 0.7834
3.2487 40 0.3999 - - - - -
3.8985 48 - 0.7644 0.7811 0.783 0.7414 0.7839
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}