Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: /workspace/medius-erebus
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

hub_model_id: magnum-erebus-14b-v1
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: anthracite-core/c2_logs_32k_llama3_qwen2_v1.2
    type: sharegpt
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: sharegpt
  - path: lodrick-the-lafted/kalo-opus-instruct-3k-filtered
    type: sharegpt
  - path: anthracite-org/nopm_claude_writing_fixed
    type: sharegpt
  - path: anthracite-org/kalo_opus_misc_240827
    type: sharegpt
  - path: anthracite-org/kalo_misc_part2
    type: sharegpt
chat_template: chatml
shuffle_merged_datasets: true
default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: /workspace/data/magnum-14b-data
val_set_size: 0.0
output_dir: /workspace/data/magnum-erebus-14b-fft

sequence_len: 32768
sample_packing: true
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

wandb_project: 14b-magnum-fft
wandb_entity:
wandb_watch:
wandb_name: v4-r2-erebus-attempt-1
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000008

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:


medius-erebus-magnum

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.0
Downloads last month
103
Safetensors
Model size
14.8B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for underwoods/medius-erebus-magnum-14b

Base model

Qwen/Qwen2.5-14B
Finetuned
(36)
this model
Merges
3 models
Quantizations
2 models