mistral_dpo

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6891
  • Rewards/chosen: 0.0621
  • Rewards/rejected: 0.0538
  • Rewards/accuracies: 0.6213
  • Rewards/margins: 0.0083
  • Logps/rejected: -52.0979
  • Logps/chosen: -55.7624
  • Logits/rejected: -0.2991
  • Logits/chosen: -0.3269

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 20
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6929 0.0882 20 0.6923 0.0239 0.0221 0.6109 0.0018 -52.4151 -56.1451 -0.2993 -0.3271
0.6919 0.1763 40 0.6908 0.0490 0.0443 0.6187 0.0047 -52.1927 -55.8934 -0.2991 -0.3268
0.6903 0.2645 60 0.6898 0.0587 0.0518 0.6157 0.0068 -52.1173 -55.7971 -0.2991 -0.3269
0.6899 0.3526 80 0.6892 0.0595 0.0515 0.6135 0.0081 -52.1210 -55.7885 -0.2991 -0.3269
0.6898 0.4408 100 0.6891 0.0621 0.0538 0.6213 0.0083 -52.0979 -55.7624 -0.2991 -0.3269

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for underactuated/mistral_dpo

Adapter
(1234)
this model