metadata
language:
- en
license: llama2
datasets:
- umd-zhou-lab/claude2_alpaca
model-index:
- name: claude2-alpaca-13B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 61.18
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.21
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.93
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.02
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.8
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.28
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=umd-zhou-lab/claude2-alpaca-13B
name: Open LLM Leaderboard
Model Card for umd-zhou-lab/claude2-alpaca-13B
This model is trained by fine-tuning llama-2 with claude2 alpaca data.
Model Details
Model Description
- Developed by: UMD Tianyi Zhou Lab
- Model type: An auto-regressive language model based on the transformer architecture
- License: Llama 2 Community License Agreement
- Finetuned from model: meta-llama/Llama-2-13b
Model Sources
- GitHub: Claude2-Alpaca
- Data: claude2_alpaca
Uses
The primary use of this model is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.
Training
We use the prompt from Stanford Alpaca
Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
---|---|---|---|---|---|
Model (13B) | 128 | 1e-5 | 5 | 2048 | 0 |
Performance
Compared to the llama2-chat, our models can have better average performance.
Average | ARC | HellaSwag | MMLU | TruthfulQA | Alpaca_Eval | Avg Length | |
---|---|---|---|---|---|---|---|
Llama-2-7b-chat | 56.335 | 52.9 | 78.55 | 48.32 | 45.57 | 71.37 | 1479 |
Llama-2-13b-chat | 59.935 | 59.04 | 81.94 | 54.64 | 44.12 | 81.09 | 1513 |
claude_alpaca-7b | 57.78 | 56.66 | 81.17 | 46.58 | 46.71 | 71.23 | 1066 |
claude_alpaca-13b | 61.29 | 61.18 | 84.08 | 55.74 | 44.18 | 78.93 | 1127 |
Citation
Please consider citing our paper if you think our codes, data, or models are useful. Thank you!
@misc{claude2-alpaca,
author = {Lichang Chen and Khalid Saifullah and Ming Li and Tianyi Zhou and Heng Huang},
title = {Claude2-Alpaca: Instruction tuning datasets distilled from claude},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/Lichang-Chen/claude2-alpaca}},
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 58.57 |
AI2 Reasoning Challenge (25-Shot) | 61.18 |
HellaSwag (10-Shot) | 84.21 |
MMLU (5-Shot) | 55.93 |
TruthfulQA (0-shot) | 45.02 |
Winogrande (5-shot) | 76.80 |
GSM8k (5-shot) | 28.28 |