tags: | |
- ultralyticsplus | |
- yolov8 | |
- ultralytics | |
- yolo | |
- vision | |
- image-classification | |
- pytorch | |
library_name: ultralytics | |
library_version: 8.0.21 | |
inference: false | |
model-index: | |
- name: uisikdag/fogsmog_v8 | |
results: | |
- task: | |
type: image-classification | |
metrics: | |
- type: accuracy | |
value: 0.8375 # min: 0.0 - max: 1.0 | |
name: top1 accuracy | |
- type: accuracy | |
value: 1 # min: 0.0 - max: 1.0 | |
name: top5 accuracy | |
<div align="center"> | |
<img width="640" alt="uisikdag/fogsmog_v8" src="https://huggingface.co./uisikdag/fogsmog_v8/resolve/main/thumbnail.jpg"> | |
</div> | |
### Supported Labels | |
``` | |
['fog', 'smog'] | |
``` | |
### How to use | |
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): | |
```bash | |
pip install ultralyticsplus==0.0.23 ultralytics==8.0.21 | |
``` | |
- Load model and perform prediction: | |
```python | |
from ultralyticsplus import YOLO, postprocess_classify_output | |
# load model | |
model = YOLO('uisikdag/fogsmog_v8') | |
# set model parameters | |
model.overrides['conf'] = 0.25 # model confidence threshold | |
# set image | |
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' | |
# perform inference | |
results = model.predict(image) | |
# observe results | |
print(results[0].probs) # [0.1, 0.2, 0.3, 0.4] | |
processed_result = postprocess_classify_output(model, result=results[0]) | |
print(processed_result) # {"cat": 0.4, "dog": 0.6} | |
``` | |