ufal
/

Tomlim commited on
Commit
2f5b17a
·
verified ·
1 Parent(s): 347ee9f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -0
README.md CHANGED
@@ -76,6 +76,28 @@ It results in balanced probabilities of gendered tokens in the model's output, a
76
  The method for obtaining `P_c` is based on the Partial Least Square algorithm.
77
  For more details, please refer to the [paper](https://openreview.net/pdf?id=XIZEFyVGC9).
78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  ## Evaluation
80
 
81
  We evaluate the models on multiple benchmarks to assess gender bias and language understanding capabilities.
 
76
  The method for obtaining `P_c` is based on the Partial Least Square algorithm.
77
  For more details, please refer to the [paper](https://openreview.net/pdf?id=XIZEFyVGC9).
78
 
79
+ ## Use
80
+
81
+ Following snippet shows the basic usage od DAMA for text generation.
82
+
83
+ ```python
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+
86
+ DAMA_SIZE= '7B'
87
+ OUTPUT_DIR = 'output'
88
+ model = AutoModelForCausalLM.from_pretrained(f"ufal/DAMA-{DAMA_SIZE}", offload_folder=OUTPUT_DIR,
89
+ torch_dtype=torch.float16, low_cpu_mem_usage=True,
90
+ device_map='auto')
91
+
92
+ tokenizer = AutoTokenizer.from_pretrained(f"ufal/DAMA-{DAMA_SIZE}", use_fast=True, return_token_type_ids=False)
93
+
94
+ prompt = "The lifeguard laughed because"
95
+ inputs = tokenizer(prompt, return_tensors="pt")
96
+
97
+ generate_ids = model.generate(inputs.input_ids, max_length=30)
98
+ tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
99
+ ```
100
+
101
  ## Evaluation
102
 
103
  We evaluate the models on multiple benchmarks to assess gender bias and language understanding capabilities.