ufal
/

Tomlim commited on
Commit
347ee9f
·
verified ·
1 Parent(s): d298ba3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -9
README.md CHANGED
@@ -2,6 +2,16 @@
2
  license: llama2
3
  language:
4
  - en
 
 
 
 
 
 
 
 
 
 
5
  ---
6
  # DAMA
7
 
@@ -19,7 +29,7 @@ For adaptation, we used **D**ebiasing **A**lgorithm through **M**odel **A**dapta
19
 
20
 
21
  - **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
22
- - **Funded by:** Grant Agency Czech Republic
23
  - **Language(s) (NLP):** English
24
  - **Adapted from model:** LLaMA
25
 
@@ -43,9 +53,9 @@ For adaptation, we used **D**ebiasing **A**lgorithm through **M**odel **A**dapta
43
 
44
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
45
 
46
- The model mitigates the gender bias of the original model.
47
- It is better suited for generating and processing texts in sensitive domains.
48
- However, we recommend caution for such use cases because the models retain bias.
49
 
50
 
51
 
@@ -82,7 +92,7 @@ Moreover, we provide the scores for two established bias benchmarks: **WinoBias*
82
  ### Results
83
 
84
 
85
- | | Bias | in | LM | | WinoBias | | | StereoSet | |
86
  |--------------------------------------------------------------------|--------|-------|--------|--------|-----------|-----------|------|-----------|------|
87
  | | `a_s` | `a_f` | `b` | Acc | `Delta S` | `Delta G` | lms | ss | ICAT |
88
  | LLaMA 7B | 0.235 | 0.320 | 0.072 | 59.1\% | 40.3\% | 3.0\% | 95.5 | 71.9 | 53.7 |
@@ -93,12 +103,13 @@ Moreover, we provide the scores for two established bias benchmarks: **WinoBias*
93
  | DAMA 33B | 0.105 | 0.172 | 0.059 | 63.7\% | 26.7\% | -3.7\% | 94.8 | 65.7 | 65.0 |
94
  | LLaMA 65B | 0.249 | 0.316 | 0.095 | 73.3\% | 35.7\% | 1.4\% | 94.9 | 69.5 | 57.9 |
95
  | DAMA 65B | 0.185 | 0.251 | 0.100 | 71.1\% | 27.2\% | 0.8\% | 92.8 | 67.1 | 61.1 |
96
- | Bias evaluation for the LLaMA models and their debiased instances. | | | | | | | | | |
 
97
 
98
 
99
  ### Performance Evaluation
100
 
101
- To check the effect of debiasing on LM capabilities, we compute perplexity on Wikipedia corpus.
102
  We also test performance on four language understanding end-tasks: **OpenBookQA**, **AI2 Reasoning Challenge** (Easy and Chalange Sets), and **Massive Multitask Language Understanding**.
103
 
104
 
@@ -115,7 +126,7 @@ We also test performance on four language understanding end-tasks: **OpenBookQA*
115
  | LLaMA 65B | 19.5 | 44.5 | 73.9 | 59.6 | ---* |
116
  | DAMA 65B | 20.1 | 40.5 | 67.7 | 57.2 | --- * |
117
 
118
- Performance evaluation for the \llama{} models and their debiased instances.
119
  Due to hardware limitations, we could not run MMLU inference for 65B models.
120
  In the evaluation of 33B model, we excluded 4\% longest prompts.
121
 
@@ -123,9 +134,10 @@ In the evaluation of 33B model, we excluded 4\% longest prompts.
123
 
124
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
125
 
 
126
  **BibTeX:**
127
 
128
- ```
129
  @inproceedings{
130
  limisiewicz2024debiasing,
131
  title={Debiasing Algorithm through Model Adaptation},
@@ -136,6 +148,11 @@ url={https://openreview.net/forum?id=XIZEFyVGC9}
136
  }
137
  ```
138
 
 
 
 
 
 
139
  ## Model Card Author
140
 
141
  [Tomasz Limisiewicz](mailto:[email protected])
 
2
  license: llama2
3
  language:
4
  - en
5
+ datasets:
6
+ - McGill-NLP/stereoset
7
+ - wino_bias
8
+ - wikitext
9
+ - allenai/ai2_arc
10
+ - allenai/openbookqa
11
+ - cais/mmlu
12
+ metrics:
13
+ - perplexity
14
+ - accuracy
15
  ---
16
  # DAMA
17
 
 
29
 
30
 
31
  - **Developed by:** Tomasz Limisiewicz, David Mareček, Tomáš Musil
32
+ - **Funded by:** Grant Agency of Czech Republic
33
  - **Language(s) (NLP):** English
34
  - **Adapted from model:** LLaMA
35
 
 
53
 
54
  <!-- This section is meant to convey both technical and sociotechnical limitations. -->
55
 
56
+ DAMA mitigates the gender bias of the original model.
57
+ It is better suited for generating and processing texts in sensitive domains, such as hiring, social services, or professional counseling.
58
+ Still, we recommend caution for such use cases because bias is not entirely erased (the same as in any other currently available method).
59
 
60
 
61
 
 
92
  ### Results
93
 
94
 
95
+ || Bias in LM ||| WinoBias ||| Stereoset |||
96
  |--------------------------------------------------------------------|--------|-------|--------|--------|-----------|-----------|------|-----------|------|
97
  | | `a_s` | `a_f` | `b` | Acc | `Delta S` | `Delta G` | lms | ss | ICAT |
98
  | LLaMA 7B | 0.235 | 0.320 | 0.072 | 59.1\% | 40.3\% | 3.0\% | 95.5 | 71.9 | 53.7 |
 
103
  | DAMA 33B | 0.105 | 0.172 | 0.059 | 63.7\% | 26.7\% | -3.7\% | 94.8 | 65.7 | 65.0 |
104
  | LLaMA 65B | 0.249 | 0.316 | 0.095 | 73.3\% | 35.7\% | 1.4\% | 94.9 | 69.5 | 57.9 |
105
  | DAMA 65B | 0.185 | 0.251 | 0.100 | 71.1\% | 27.2\% | 0.8\% | 92.8 | 67.1 | 61.1 |
106
+
107
+ Bias evaluation for the LLaMA models and their debiased instances.
108
 
109
 
110
  ### Performance Evaluation
111
 
112
+ To check the effect of debiasing on LM capabilities, we compute perplexity on **Wikipedia corpus**.
113
  We also test performance on four language understanding end-tasks: **OpenBookQA**, **AI2 Reasoning Challenge** (Easy and Chalange Sets), and **Massive Multitask Language Understanding**.
114
 
115
 
 
126
  | LLaMA 65B | 19.5 | 44.5 | 73.9 | 59.6 | ---* |
127
  | DAMA 65B | 20.1 | 40.5 | 67.7 | 57.2 | --- * |
128
 
129
+ Performance evaluation for the LLaMA models and their debiased instances.
130
  Due to hardware limitations, we could not run MMLU inference for 65B models.
131
  In the evaluation of 33B model, we excluded 4\% longest prompts.
132
 
 
134
 
135
  <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
136
 
137
+
138
  **BibTeX:**
139
 
140
+ ```bibtex
141
  @inproceedings{
142
  limisiewicz2024debiasing,
143
  title={Debiasing Algorithm through Model Adaptation},
 
148
  }
149
  ```
150
 
151
+ **APA:**
152
+
153
+ Limisiewicz, T., Mareček, D., & Musil, T. (2024). Debiasing Algorithm through Model Adaptation. The Twelfth International Conference on Learning Representations.
154
+
155
+
156
  ## Model Card Author
157
 
158
  [Tomasz Limisiewicz](mailto:[email protected])