Chinese GPT2 Lyric Model

Model description

The model is pre-trained by UER-py, which is introduced in this paper. Besides, the model could also be pre-trained by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.

The model is used to generate Chinese lyrics. You can download the model from the UER-py Modelzoo page, or GPT2-Chinese Github page, or via HuggingFace from the link gpt2-chinese-lyric

How to use

You can use the model directly with a pipeline for text generation:

>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-lyric")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-lyric")
>>> text_generator = TextGenerationPipeline(model, tokenizer)   
>>> text_generator("最美的不是下雨天,是曾与你躲过雨的屋檐", max_length=100, do_sample=True)
    [{'generated_text': '最美的不是下雨天,是曾与你躲过雨的屋檐 , 下 课 铃 声 响 起 的 瞬 间 , 我 们 的 笑 脸 , 有 太 多 回 忆 在 浮 现 , 是 你 总 在 我 身 边 , 不 知 道 会 不 会 再 见 , 从 现 在 开 始 到 永 远 , 想 说 的 语 言 凝 结 成 一 句 , 不 管 我 们 是 否 能 够 兑 现 , 想 说 的 语 言 凝 结'}]

Training data

Training data contains 150,000 Chinese lyrics which are collected by Chinese-Lyric-Corpus and MusicLyricChatbot.

Training procedure

The model is pre-trained by UER-py on Tencent Cloud. We pre-train 100,000 steps with a sequence length of 512 on the basis of the pre-trained model gpt2-base-chinese-cluecorpussmall

python3 preprocess.py --corpus_path corpora/lyric.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path lyric_dataset.pt --processes_num 32 \
                      --seq_length 512 --data_processor lm
python3 pretrain.py --dataset_path lyric_dataset.pt \
                    --pretrained_model_path models/cluecorpussmall_gpt2_seq1024_model.bin-250000 \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/gpt2/config.json \
                    --output_model_path models/lyric_gpt2_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 100000 --save_checkpoint_steps 10000 --report_steps 5000 \
                    --learning_rate 5e-5 --batch_size 64

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/lyric_gpt2_model.bin-100000 \
                                                        --output_model_path pytorch_model.bin \
                                                        --layers_num 12

BibTeX entry and citation info

@article{radford2019language,
  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
}
Downloads last month
669
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using uer/gpt2-chinese-lyric 3