Chinese GPT2 Models
Model description
The set of GPT2 models, except for GPT2-xlarge model, are pre-trained by UER-py, which is introduced in this paper. The GPT2-xlarge model is pre-trained by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework. Besides, the other models could also be pre-trained by TencentPretrain.
The model is used to generate Chinese texts. You can download the set of Chinese GPT2 models either from the UER-py Modelzoo page, or via HuggingFace from the links below:
Link | |
---|---|
GPT2-distil | L=6/H=768 |
GPT2 | L=12/H=768 |
GPT2-medium | L=24/H=1024 |
GPT2-large | L=36/H=1280 |
GPT2-xlarge | L=48/H=1600 |
Note that the 6-layer model is called GPT2-distil model because it follows the configuration of distilgpt2, and the pre-training does not involve the supervision of larger models.
How to use
You can use the model directly with a pipeline for text generation (take the case of GPT2-distil):
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-distil-chinese-cluecorpussmall")
>>> text_generator = TextGenerationPipeline(model, tokenizer)
>>> text_generator("这是很久之前的事情了", max_length=100, do_sample=True)
[{'generated_text': '这是很久之前的事情了 。 我 现 在 想 起 来 就 让 自 己 很 伤 心 , 很 失 望 。 我 现 在 想 到 , 我 觉 得 大 多 数 人 的 生 活 比 我 的 生 命 还 要 重 要 , 对 一 些 事 情 的 看 法 , 对 一 些 人 的 看 法 , 都 是 在 发 泄 。 但 是 , 我 们 的 生 活 是 需 要 一 个 信 用 体 系 的 。 我 不 知'}]
Training data
CLUECorpusSmall is used as training data.
Training procedure
The GPT2-xlarge model is pre-trained by TencentPretrain, and the others are pre-trained by UER-py on Tencent Cloud. We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 1024.
For the models pre-trained by UER-py, take the case of GPT2-distil
Stage1:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \
--seq_length 128 --processes_num 32 --data_processor lm
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/distil_config.json \
--output_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64
Stage2:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
--seq_length 1024 --processes_num 32 --data_processor lm
python3 pretrain.py --dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--pretrained_model_path models/cluecorpussmall_gpt2_distil_seq128_model.bin-1000000 \
--config_path models/gpt2/distil_config.json \
--output_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16
Finally, we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_distil_seq1024_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 6
For GPT2-xlarge model, we use TencetPretrain.
Stage1:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq128_dataset.pt \
--seq_length 128 --processes_num 32 --data_processor lm
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
--dataset_path corpora/cluecorpussmall_lm_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/xlarge_config.json \
--output_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model \
--world_size 8 --batch_size 64 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 24
Before stage2, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:
python3 models/cluecorpussmall_gpt2_xlarge_seq128_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq128_model/ \
models/cluecorpussmall_gpt2_xlarge_seq128_model.bin
Stage2:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_lm_seq1024_dataset.pt \
--seq_length 1024 --processes_num 32 --data_processor lm
deepspeed pretrain.py --deepspeed --deepspeed_config models/deepspeed_config.json \
--dataset_path corpora/cluecorpussmall_lm_seq1024_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gpt2/xlarge_config.json \
--pretrained_model_path models/cluecorpussmall_gpt2_xlarge_seq128_model.bin \
--output_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model \
--world_size 8 --batch_size 16 --learning_rate 5e-5 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--deepspeed_checkpoint_activations --deepspeed_checkpoint_layers_num 6
Then, we extract fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints:
python3 models/cluecorpussmall_gpt2_xlarge_seq1024_model/zero_to_fp32.py models/cluecorpussmall_gpt2_xlarge_seq1024_model/ \
models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin
Finally, we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_gpt2_from_tencentpretrain_to_huggingface.py --input_model_path models/cluecorpussmall_gpt2_xlarge_seq1024_model.bin \
--output_model_path pytorch_model.bin \
--layers_num 48
BibTeX entry and citation info
@article{radford2019language,
title={Language Models are Unsupervised Multitask Learners},
author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
- Downloads last month
- 10,119