metadata
license: apache-2.0
base_model: google/mt5-base
tags:
- Question Answering
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mT5-base-turkish-qa
results: []
language:
- tr
pipeline_tag: text2text-generation
widget:
- text: >-
Soru: Nazım Hikmet ne zaman doğmuştur?
Metin: Nâzım Hikmet, Mehmed Nâzım adıyla 15 Ocak 1902 tarihinde Selanik'te
doğdu. O sırada Hariciye Nezareti memuru olarak Selanik'te çalışan Hikmet
Bey, Nâzım'ın çocukluğunda memuriyetten ayrıldı ve ailesiyle birlikte,
Halep'te bulunan babasının yanına gitti. Burada bulundukları sırada
Hikmet-Celile çiftinin biri Ali İbrahim, diğeri Samiye adında iki çocuğu
oldu, fakat Ali İbrahim dizanteriye yakalanıp öldü.
datasets:
- ucsahin/TR-Extractive-QA-82K
mT5-base-turkish-qa
This model is a fine-tuned version of google/mt5-base on the ucsahin/TR-Extractive-QA-82K dataset. It achieves the following results on the evaluation set:
- Loss: 0.5109
- Rouge1: 79.3283
- Rouge2: 68.0845
- Rougel: 79.3474
- Rougelsum: 79.2937
Model description
mT5-base model is trained with manually curated Turkish dataset consisting of 65K training samples with ("question", "answer", "context") triplets.
Intended uses & limitations
The intended use of the model is extractive question answering.
In order to use the inference widget, enter your input in the format:
Soru: question_text
Metin: context_text
Generated response by the model:
Cevap: answer_text
Use with Transformers:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from datasets import load_dataset
# Load the dataset
qa_tr_datasets = load_dataset("ucsahin/TR-Extractive-QA-82K")
# Load model and tokenizer
model_checkpoint = "ucsahin/mT5-base-turkish-qa"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
inference_dataset = qa_tr_datasets["test"].select(range(10))
for input in inference_dataset:
input_question = "Soru: " + input["question"]
input_context = "Metin: " + input["context"]
tokenized_inputs = tokenizer(input_question, input_context, max_length=512, truncation=True, return_tensors="pt")
outputs = model.generate(input_ids=tokenized_inputs["input_ids"], max_new_tokens=32)
output_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
print(f"Reference answer: {input['answer']}, Model Answer: {output_text}")
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
2.0454 | 0.13 | 500 | 0.6771 | 73.1040 | 59.8915 | 73.1819 | 73.0558 |
0.8012 | 0.26 | 1000 | 0.6012 | 76.3357 | 64.1967 | 76.3796 | 76.2688 |
0.7703 | 0.39 | 1500 | 0.5844 | 76.8932 | 65.2509 | 76.9932 | 76.9418 |
0.6783 | 0.51 | 2000 | 0.5587 | 76.7284 | 64.8453 | 76.7416 | 76.6720 |
0.6546 | 0.64 | 2500 | 0.5362 | 78.2261 | 66.5893 | 78.2515 | 78.2142 |
0.6289 | 0.77 | 3000 | 0.5133 | 78.6917 | 67.1534 | 78.6852 | 78.6319 |
0.6292 | 0.9 | 3500 | 0.5109 | 79.3283 | 68.0845 | 79.3474 | 79.2937 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0