pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
keyphrase-mpnet-v1
This is a sentence-transformers model specialized for phrases: It maps phrases to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model is based on sentence-transformers/all-mpnet-base-v2 and further fine-tuned on 1 million keyphrase data with SimCSE.
Citing & Authors
@article{wu2023kpeval,
title={KPEval: Towards Fine-grained Semantic-based Evaluation of Keyphrase Extraction and Generation Systems},
author={Di Wu and Da Yin and Kai-Wei Chang},
year={2023},
eprint={2303.15422},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
phrases = ["information retrieval", "text mining", "natural language processing"]
model = SentenceTransformer('uclanlp/keyphrase-mpnet-v1')
embeddings = model.encode(phrases)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
phrases = ["information retrieval", "text mining", "natural language processing"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('uclanlp/keyphrase-mpnet-v1')
model = AutoModel.from_pretrained('uclanlp/keyphrase-mpnet-v1')
# Tokenize sentences
encoded_input = tokenizer(phrases, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Phrase embeddings:")
print(sentence_embeddings)
Training
The model is trained on phrases from four keyphrase datasets covering a wide range of domains.
Dataset Name | Domain | Number of Phrases |
---|---|---|
KP20k | Science | 715369 |
KPTimes | News | 113456 |
StackEx | Online Forum | 8149 |
OpenKP | Web | 200335 |
Total | 1030309 |
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 2025 with parameters:
{'batch_size': 512, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-06
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 203,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 12, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)