metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: finetune_v7
results: []
finetune_v7
This model is a fine-tuned version of openai/whisper-large-v3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6387
- Wer: 81.7276
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 80
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
No log | 6.6667 | 10 | 0.6616 | 27.2425 |
No log | 13.3333 | 20 | 0.6074 | 28.5714 |
No log | 20.0 | 30 | 0.6377 | 28.5714 |
No log | 26.6667 | 40 | 0.6221 | 32.5581 |
0.2362 | 33.3333 | 50 | 0.6255 | 103.9867 |
0.2362 | 40.0 | 60 | 0.6309 | 36.2126 |
0.2362 | 46.6667 | 70 | 0.6362 | 37.2093 |
0.2362 | 53.3333 | 80 | 0.6387 | 81.7276 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1