lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-hf_3e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 10.0702
- Accuracy: 0.1692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3822 | 1.0 | 529 | 1.2977 | 0.6172 |
1.2744 | 2.0 | 1058 | 1.3745 | 0.6032 |
1.1768 | 3.0 | 1587 | 1.3319 | 0.6157 |
0.9247 | 4.0 | 2116 | 1.4367 | 0.6102 |
1.1836 | 5.0 | 2645 | 1.9168 | 0.5569 |
2.035 | 6.0 | 3174 | 2.0794 | 0.5377 |
3.7483 | 7.0 | 3703 | 2.6723 | 0.4881 |
7.127 | 8.0 | 4232 | 7.0410 | 0.1922 |
7.5321 | 9.0 | 4761 | 6.6488 | 0.1941 |
7.3806 | 10.0 | 5290 | 6.8427 | 0.2197 |
7.8159 | 11.0 | 5819 | 6.8836 | 0.2197 |
7.975 | 12.0 | 6348 | 6.8763 | 0.2197 |
7.9902 | 13.0 | 6877 | 6.8726 | 0.2197 |
7.8585 | 14.0 | 7406 | 6.8236 | 0.2195 |
7.3449 | 15.0 | 7935 | 7.1997 | 0.1922 |
7.3133 | 16.0 | 8464 | 6.7455 | 0.1869 |
7.305 | 17.0 | 8993 | 6.7454 | 0.1869 |
7.7463 | 18.0 | 9522 | 8.8319 | 0.1870 |
9.9696 | 19.0 | 10051 | 10.0702 | 0.1692 |
9.9845 | 20.0 | 10580 | 10.0702 | 0.1692 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-hf_3e-4_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_meta-llama_Llama-2-7b-hf_3e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3self-reported0.169