lmind_nq_train6000_eval6489_v1_doc_qa_v3_5e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 6.7918
- Accuracy: 0.1930
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.3891 | 1.0 | 529 | 0.6138 | 1.3015 |
1.3633 | 2.0 | 1058 | 0.6166 | 1.2855 |
1.2929 | 3.0 | 1587 | 0.6177 | 1.2954 |
1.2361 | 4.0 | 2116 | 0.6045 | 1.3489 |
1.1856 | 5.0 | 2645 | 0.6125 | 1.3968 |
1.1098 | 6.0 | 3174 | 0.6115 | 1.4721 |
1.0753 | 7.0 | 3703 | 0.6076 | 1.5798 |
1.0048 | 8.0 | 4232 | 0.6084 | 1.6042 |
0.9456 | 9.0 | 4761 | 0.5977 | 1.6843 |
0.8766 | 10.0 | 5290 | 0.6051 | 1.7829 |
0.8273 | 11.0 | 5819 | 0.6043 | 1.8060 |
0.7755 | 12.0 | 6348 | 0.6019 | 1.8729 |
0.715 | 13.0 | 6877 | 0.6017 | 1.9620 |
0.6804 | 14.0 | 7406 | 0.6009 | 2.0030 |
0.6277 | 15.0 | 7935 | 0.5998 | 2.0528 |
0.5733 | 16.0 | 8464 | 0.6012 | 2.0475 |
0.5409 | 17.0 | 8993 | 0.5749 | 2.0920 |
0.5024 | 18.0 | 9522 | 0.5986 | 2.1207 |
0.4699 | 19.0 | 10051 | 0.5993 | 2.1108 |
0.4367 | 20.0 | 10580 | 0.6005 | 2.1089 |
0.857 | 21.0 | 11109 | 0.5983 | 2.0215 |
3.7434 | 22.0 | 11638 | 0.2233 | 10.1186 |
7.7259 | 23.0 | 12167 | 0.1986 | 7.5379 |
4.2204 | 24.0 | 12696 | 0.5345 | 2.1568 |
0.7385 | 25.0 | 13225 | 0.5963 | 1.8229 |
1.1473 | 26.0 | 13754 | 0.5788 | 1.7570 |
2.0182 | 27.0 | 14283 | 0.5573 | 1.7293 |
2.2707 | 28.0 | 14812 | 0.4956 | 2.7017 |
4.1792 | 29.0 | 15341 | 0.3070 | 5.8288 |
7.7703 | 30.0 | 15870 | 0.1922 | 7.6619 |
7.7034 | 31.0 | 16399 | 0.1913 | 7.7003 |
7.9533 | 32.0 | 16928 | 0.1899 | 7.8667 |
7.8634 | 33.0 | 17457 | 0.1897 | 7.8134 |
7.8584 | 34.0 | 17986 | 0.1882 | 7.6760 |
7.824 | 35.0 | 18515 | 0.1888 | 7.7083 |
7.7446 | 36.0 | 19044 | 0.1888 | 7.6626 |
7.6708 | 37.0 | 19573 | 0.1886 | 7.5529 |
7.6733 | 38.0 | 20102 | 0.1903 | 7.5704 |
7.6271 | 39.0 | 20631 | 0.1949 | 7.5363 |
7.5886 | 40.0 | 21160 | 0.2130 | 7.4684 |
7.5514 | 41.0 | 21689 | 0.2077 | 7.4223 |
7.5205 | 42.0 | 22218 | 0.1946 | 7.3508 |
7.4577 | 43.0 | 22747 | 0.1951 | 7.1785 |
7.5021 | 44.0 | 23276 | 0.2092 | 6.6226 |
7.1133 | 45.0 | 23805 | 0.1994 | 6.4100 |
6.9682 | 46.0 | 24334 | 0.2250 | 6.3553 |
6.8891 | 47.0 | 24863 | 0.2224 | 6.3128 |
6.8621 | 48.0 | 25392 | 0.23 | 6.2465 |
6.8176 | 49.0 | 25921 | 0.2561 | 6.1966 |
6.9473 | 50.0 | 26450 | 0.1930 | 6.7918 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_5e-5_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_5e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3self-reported0.193