twine-network's picture
Upload README.md with huggingface_hub
c6f67a2 verified
---
language:
- en
library_name: sentence-transformers
license: mit
pipeline_tag: sentence-similarity
tags:
- feature-extraction
- mteb
- sentence-similarity
- sentence-transformers
- transformers
- llama-cpp
- gguf-my-repo
base_model: avsolatorio/NoInstruct-small-Embedding-v0
model-index:
- name: NoInstruct-small-Embedding-v0
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 75.76119402985074
- type: ap
value: 39.03628777559392
- type: f1
value: 69.85860402259618
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.29920000000001
- type: ap
value: 90.03479490717608
- type: f1
value: 93.28554395248467
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 49.98799999999999
- type: f1
value: 49.46151232451642
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: mteb/arguana
config: default
split: test
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
metrics:
- type: map_at_1
value: 31.935000000000002
- type: map_at_10
value: 48.791000000000004
- type: map_at_100
value: 49.619
- type: map_at_1000
value: 49.623
- type: map_at_3
value: 44.334
- type: map_at_5
value: 46.908
- type: mrr_at_1
value: 32.93
- type: mrr_at_10
value: 49.158
- type: mrr_at_100
value: 50.00599999999999
- type: mrr_at_1000
value: 50.01
- type: mrr_at_3
value: 44.618
- type: mrr_at_5
value: 47.325
- type: ndcg_at_1
value: 31.935000000000002
- type: ndcg_at_10
value: 57.593
- type: ndcg_at_100
value: 60.841
- type: ndcg_at_1000
value: 60.924
- type: ndcg_at_3
value: 48.416
- type: ndcg_at_5
value: 53.05
- type: precision_at_1
value: 31.935000000000002
- type: precision_at_10
value: 8.549
- type: precision_at_100
value: 0.9900000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 20.081
- type: precision_at_5
value: 14.296000000000001
- type: recall_at_1
value: 31.935000000000002
- type: recall_at_10
value: 85.491
- type: recall_at_100
value: 99.004
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 60.242
- type: recall_at_5
value: 71.479
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 47.78438534940855
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 40.12916178519471
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.125361608299855
- type: mrr
value: 74.92525172580574
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 88.64322910336641
- type: cos_sim_spearman
value: 87.20138453306345
- type: euclidean_pearson
value: 87.08547818178234
- type: euclidean_spearman
value: 87.17066094143931
- type: manhattan_pearson
value: 87.30053110771618
- type: manhattan_spearman
value: 86.86824441211934
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 86.3961038961039
- type: f1
value: 86.3669961645295
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 39.40291404289857
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 35.102356817746816
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: mteb/cqadupstack-android
config: default
split: test
revision: f46a197baaae43b4f621051089b82a364682dfeb
metrics:
- type: map_at_1
value: 31.013
- type: map_at_10
value: 42.681999999999995
- type: map_at_100
value: 44.24
- type: map_at_1000
value: 44.372
- type: map_at_3
value: 39.181
- type: map_at_5
value: 41.071999999999996
- type: mrr_at_1
value: 38.196999999999996
- type: mrr_at_10
value: 48.604
- type: mrr_at_100
value: 49.315
- type: mrr_at_1000
value: 49.363
- type: mrr_at_3
value: 45.756
- type: mrr_at_5
value: 47.43
- type: ndcg_at_1
value: 38.196999999999996
- type: ndcg_at_10
value: 49.344
- type: ndcg_at_100
value: 54.662
- type: ndcg_at_1000
value: 56.665
- type: ndcg_at_3
value: 44.146
- type: ndcg_at_5
value: 46.514
- type: precision_at_1
value: 38.196999999999996
- type: precision_at_10
value: 9.571
- type: precision_at_100
value: 1.542
- type: precision_at_1000
value: 0.202
- type: precision_at_3
value: 21.364
- type: precision_at_5
value: 15.336
- type: recall_at_1
value: 31.013
- type: recall_at_10
value: 61.934999999999995
- type: recall_at_100
value: 83.923
- type: recall_at_1000
value: 96.601
- type: recall_at_3
value: 46.86
- type: recall_at_5
value: 53.620000000000005
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackEnglishRetrieval
type: mteb/cqadupstack-english
config: default
split: test
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
metrics:
- type: map_at_1
value: 29.84
- type: map_at_10
value: 39.335
- type: map_at_100
value: 40.647
- type: map_at_1000
value: 40.778
- type: map_at_3
value: 36.556
- type: map_at_5
value: 38.048
- type: mrr_at_1
value: 36.815
- type: mrr_at_10
value: 45.175
- type: mrr_at_100
value: 45.907
- type: mrr_at_1000
value: 45.946999999999996
- type: mrr_at_3
value: 42.909000000000006
- type: mrr_at_5
value: 44.227
- type: ndcg_at_1
value: 36.815
- type: ndcg_at_10
value: 44.783
- type: ndcg_at_100
value: 49.551
- type: ndcg_at_1000
value: 51.612
- type: ndcg_at_3
value: 40.697
- type: ndcg_at_5
value: 42.558
- type: precision_at_1
value: 36.815
- type: precision_at_10
value: 8.363
- type: precision_at_100
value: 1.385
- type: precision_at_1000
value: 0.186
- type: precision_at_3
value: 19.342000000000002
- type: precision_at_5
value: 13.706999999999999
- type: recall_at_1
value: 29.84
- type: recall_at_10
value: 54.164
- type: recall_at_100
value: 74.36
- type: recall_at_1000
value: 87.484
- type: recall_at_3
value: 42.306
- type: recall_at_5
value: 47.371
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGamingRetrieval
type: mteb/cqadupstack-gaming
config: default
split: test
revision: 4885aa143210c98657558c04aaf3dc47cfb54340
metrics:
- type: map_at_1
value: 39.231
- type: map_at_10
value: 51.44800000000001
- type: map_at_100
value: 52.574
- type: map_at_1000
value: 52.629999999999995
- type: map_at_3
value: 48.077
- type: map_at_5
value: 50.019000000000005
- type: mrr_at_1
value: 44.89
- type: mrr_at_10
value: 54.803000000000004
- type: mrr_at_100
value: 55.556000000000004
- type: mrr_at_1000
value: 55.584
- type: mrr_at_3
value: 52.32
- type: mrr_at_5
value: 53.846000000000004
- type: ndcg_at_1
value: 44.89
- type: ndcg_at_10
value: 57.228
- type: ndcg_at_100
value: 61.57
- type: ndcg_at_1000
value: 62.613
- type: ndcg_at_3
value: 51.727000000000004
- type: ndcg_at_5
value: 54.496
- type: precision_at_1
value: 44.89
- type: precision_at_10
value: 9.266
- type: precision_at_100
value: 1.2309999999999999
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 23.051
- type: precision_at_5
value: 15.987000000000002
- type: recall_at_1
value: 39.231
- type: recall_at_10
value: 70.82000000000001
- type: recall_at_100
value: 89.446
- type: recall_at_1000
value: 96.665
- type: recall_at_3
value: 56.40500000000001
- type: recall_at_5
value: 62.993
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackGisRetrieval
type: mteb/cqadupstack-gis
config: default
split: test
revision: 5003b3064772da1887988e05400cf3806fe491f2
metrics:
- type: map_at_1
value: 25.296000000000003
- type: map_at_10
value: 34.021
- type: map_at_100
value: 35.158
- type: map_at_1000
value: 35.233
- type: map_at_3
value: 31.424999999999997
- type: map_at_5
value: 33.046
- type: mrr_at_1
value: 27.232
- type: mrr_at_10
value: 36.103
- type: mrr_at_100
value: 37.076
- type: mrr_at_1000
value: 37.135
- type: mrr_at_3
value: 33.635
- type: mrr_at_5
value: 35.211
- type: ndcg_at_1
value: 27.232
- type: ndcg_at_10
value: 38.878
- type: ndcg_at_100
value: 44.284
- type: ndcg_at_1000
value: 46.268
- type: ndcg_at_3
value: 33.94
- type: ndcg_at_5
value: 36.687
- type: precision_at_1
value: 27.232
- type: precision_at_10
value: 5.921
- type: precision_at_100
value: 0.907
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 14.426
- type: precision_at_5
value: 10.215
- type: recall_at_1
value: 25.296000000000003
- type: recall_at_10
value: 51.708
- type: recall_at_100
value: 76.36699999999999
- type: recall_at_1000
value: 91.306
- type: recall_at_3
value: 38.651
- type: recall_at_5
value: 45.201
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackMathematicaRetrieval
type: mteb/cqadupstack-mathematica
config: default
split: test
revision: 90fceea13679c63fe563ded68f3b6f06e50061de
metrics:
- type: map_at_1
value: 16.24
- type: map_at_10
value: 24.696
- type: map_at_100
value: 25.945
- type: map_at_1000
value: 26.069
- type: map_at_3
value: 22.542
- type: map_at_5
value: 23.526
- type: mrr_at_1
value: 20.149
- type: mrr_at_10
value: 29.584
- type: mrr_at_100
value: 30.548
- type: mrr_at_1000
value: 30.618000000000002
- type: mrr_at_3
value: 27.301
- type: mrr_at_5
value: 28.563
- type: ndcg_at_1
value: 20.149
- type: ndcg_at_10
value: 30.029
- type: ndcg_at_100
value: 35.812
- type: ndcg_at_1000
value: 38.755
- type: ndcg_at_3
value: 26.008
- type: ndcg_at_5
value: 27.517000000000003
- type: precision_at_1
value: 20.149
- type: precision_at_10
value: 5.647
- type: precision_at_100
value: 0.968
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 12.934999999999999
- type: precision_at_5
value: 8.955
- type: recall_at_1
value: 16.24
- type: recall_at_10
value: 41.464
- type: recall_at_100
value: 66.781
- type: recall_at_1000
value: 87.85300000000001
- type: recall_at_3
value: 29.822
- type: recall_at_5
value: 34.096
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackPhysicsRetrieval
type: mteb/cqadupstack-physics
config: default
split: test
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
metrics:
- type: map_at_1
value: 29.044999999999998
- type: map_at_10
value: 39.568999999999996
- type: map_at_100
value: 40.831
- type: map_at_1000
value: 40.948
- type: map_at_3
value: 36.495
- type: map_at_5
value: 38.21
- type: mrr_at_1
value: 35.611
- type: mrr_at_10
value: 45.175
- type: mrr_at_100
value: 45.974
- type: mrr_at_1000
value: 46.025
- type: mrr_at_3
value: 42.765
- type: mrr_at_5
value: 44.151
- type: ndcg_at_1
value: 35.611
- type: ndcg_at_10
value: 45.556999999999995
- type: ndcg_at_100
value: 50.86000000000001
- type: ndcg_at_1000
value: 52.983000000000004
- type: ndcg_at_3
value: 40.881
- type: ndcg_at_5
value: 43.035000000000004
- type: precision_at_1
value: 35.611
- type: precision_at_10
value: 8.306
- type: precision_at_100
value: 1.276
- type: precision_at_1000
value: 0.165
- type: precision_at_3
value: 19.57
- type: precision_at_5
value: 13.725000000000001
- type: recall_at_1
value: 29.044999999999998
- type: recall_at_10
value: 57.513999999999996
- type: recall_at_100
value: 80.152
- type: recall_at_1000
value: 93.982
- type: recall_at_3
value: 44.121
- type: recall_at_5
value: 50.007000000000005
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackProgrammersRetrieval
type: mteb/cqadupstack-programmers
config: default
split: test
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
metrics:
- type: map_at_1
value: 22.349
- type: map_at_10
value: 33.434000000000005
- type: map_at_100
value: 34.8
- type: map_at_1000
value: 34.919
- type: map_at_3
value: 30.348000000000003
- type: map_at_5
value: 31.917
- type: mrr_at_1
value: 28.195999999999998
- type: mrr_at_10
value: 38.557
- type: mrr_at_100
value: 39.550999999999995
- type: mrr_at_1000
value: 39.607
- type: mrr_at_3
value: 36.035000000000004
- type: mrr_at_5
value: 37.364999999999995
- type: ndcg_at_1
value: 28.195999999999998
- type: ndcg_at_10
value: 39.656000000000006
- type: ndcg_at_100
value: 45.507999999999996
- type: ndcg_at_1000
value: 47.848
- type: ndcg_at_3
value: 34.609
- type: ndcg_at_5
value: 36.65
- type: precision_at_1
value: 28.195999999999998
- type: precision_at_10
value: 7.534000000000001
- type: precision_at_100
value: 1.217
- type: precision_at_1000
value: 0.158
- type: precision_at_3
value: 17.085
- type: precision_at_5
value: 12.169
- type: recall_at_1
value: 22.349
- type: recall_at_10
value: 53.127
- type: recall_at_100
value: 77.884
- type: recall_at_1000
value: 93.705
- type: recall_at_3
value: 38.611000000000004
- type: recall_at_5
value: 44.182
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: mteb/cqadupstack
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 25.215749999999996
- type: map_at_10
value: 34.332750000000004
- type: map_at_100
value: 35.58683333333333
- type: map_at_1000
value: 35.70458333333333
- type: map_at_3
value: 31.55441666666667
- type: map_at_5
value: 33.100833333333334
- type: mrr_at_1
value: 29.697250000000004
- type: mrr_at_10
value: 38.372249999999994
- type: mrr_at_100
value: 39.26708333333334
- type: mrr_at_1000
value: 39.3265
- type: mrr_at_3
value: 35.946083333333334
- type: mrr_at_5
value: 37.336999999999996
- type: ndcg_at_1
value: 29.697250000000004
- type: ndcg_at_10
value: 39.64575
- type: ndcg_at_100
value: 44.996833333333335
- type: ndcg_at_1000
value: 47.314499999999995
- type: ndcg_at_3
value: 34.93383333333334
- type: ndcg_at_5
value: 37.15291666666667
- type: precision_at_1
value: 29.697250000000004
- type: precision_at_10
value: 6.98825
- type: precision_at_100
value: 1.138
- type: precision_at_1000
value: 0.15283333333333332
- type: precision_at_3
value: 16.115583333333333
- type: precision_at_5
value: 11.460916666666666
- type: recall_at_1
value: 25.215749999999996
- type: recall_at_10
value: 51.261250000000004
- type: recall_at_100
value: 74.67258333333334
- type: recall_at_1000
value: 90.72033333333334
- type: recall_at_3
value: 38.1795
- type: recall_at_5
value: 43.90658333333334
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackStatsRetrieval
type: mteb/cqadupstack-stats
config: default
split: test
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
metrics:
- type: map_at_1
value: 24.352
- type: map_at_10
value: 30.576999999999998
- type: map_at_100
value: 31.545
- type: map_at_1000
value: 31.642
- type: map_at_3
value: 28.605000000000004
- type: map_at_5
value: 29.828
- type: mrr_at_1
value: 26.994
- type: mrr_at_10
value: 33.151
- type: mrr_at_100
value: 33.973
- type: mrr_at_1000
value: 34.044999999999995
- type: mrr_at_3
value: 31.135
- type: mrr_at_5
value: 32.262
- type: ndcg_at_1
value: 26.994
- type: ndcg_at_10
value: 34.307
- type: ndcg_at_100
value: 39.079
- type: ndcg_at_1000
value: 41.548
- type: ndcg_at_3
value: 30.581000000000003
- type: ndcg_at_5
value: 32.541
- type: precision_at_1
value: 26.994
- type: precision_at_10
value: 5.244999999999999
- type: precision_at_100
value: 0.831
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 12.781
- type: precision_at_5
value: 9.017999999999999
- type: recall_at_1
value: 24.352
- type: recall_at_10
value: 43.126999999999995
- type: recall_at_100
value: 64.845
- type: recall_at_1000
value: 83.244
- type: recall_at_3
value: 33.308
- type: recall_at_5
value: 37.984
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackTexRetrieval
type: mteb/cqadupstack-tex
config: default
split: test
revision: 46989137a86843e03a6195de44b09deda022eec7
metrics:
- type: map_at_1
value: 16.592000000000002
- type: map_at_10
value: 23.29
- type: map_at_100
value: 24.423000000000002
- type: map_at_1000
value: 24.554000000000002
- type: map_at_3
value: 20.958
- type: map_at_5
value: 22.267
- type: mrr_at_1
value: 20.061999999999998
- type: mrr_at_10
value: 26.973999999999997
- type: mrr_at_100
value: 27.944999999999997
- type: mrr_at_1000
value: 28.023999999999997
- type: mrr_at_3
value: 24.839
- type: mrr_at_5
value: 26.033
- type: ndcg_at_1
value: 20.061999999999998
- type: ndcg_at_10
value: 27.682000000000002
- type: ndcg_at_100
value: 33.196
- type: ndcg_at_1000
value: 36.246
- type: ndcg_at_3
value: 23.559
- type: ndcg_at_5
value: 25.507
- type: precision_at_1
value: 20.061999999999998
- type: precision_at_10
value: 5.086
- type: precision_at_100
value: 0.9249999999999999
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 11.046
- type: precision_at_5
value: 8.149000000000001
- type: recall_at_1
value: 16.592000000000002
- type: recall_at_10
value: 37.181999999999995
- type: recall_at_100
value: 62.224999999999994
- type: recall_at_1000
value: 84.072
- type: recall_at_3
value: 25.776
- type: recall_at_5
value: 30.680000000000003
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackUnixRetrieval
type: mteb/cqadupstack-unix
config: default
split: test
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
metrics:
- type: map_at_1
value: 26.035999999999998
- type: map_at_10
value: 34.447
- type: map_at_100
value: 35.697
- type: map_at_1000
value: 35.802
- type: map_at_3
value: 31.64
- type: map_at_5
value: 33.056999999999995
- type: mrr_at_1
value: 29.851
- type: mrr_at_10
value: 38.143
- type: mrr_at_100
value: 39.113
- type: mrr_at_1000
value: 39.175
- type: mrr_at_3
value: 35.665
- type: mrr_at_5
value: 36.901
- type: ndcg_at_1
value: 29.851
- type: ndcg_at_10
value: 39.554
- type: ndcg_at_100
value: 45.091
- type: ndcg_at_1000
value: 47.504000000000005
- type: ndcg_at_3
value: 34.414
- type: ndcg_at_5
value: 36.508
- type: precision_at_1
value: 29.851
- type: precision_at_10
value: 6.614000000000001
- type: precision_at_100
value: 1.051
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 15.329999999999998
- type: precision_at_5
value: 10.671999999999999
- type: recall_at_1
value: 26.035999999999998
- type: recall_at_10
value: 51.396
- type: recall_at_100
value: 75.09
- type: recall_at_1000
value: 91.904
- type: recall_at_3
value: 37.378
- type: recall_at_5
value: 42.69
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWebmastersRetrieval
type: mteb/cqadupstack-webmasters
config: default
split: test
revision: 160c094312a0e1facb97e55eeddb698c0abe3571
metrics:
- type: map_at_1
value: 23.211000000000002
- type: map_at_10
value: 32.231
- type: map_at_100
value: 33.772999999999996
- type: map_at_1000
value: 33.982
- type: map_at_3
value: 29.128
- type: map_at_5
value: 31.002999999999997
- type: mrr_at_1
value: 27.668
- type: mrr_at_10
value: 36.388
- type: mrr_at_100
value: 37.384
- type: mrr_at_1000
value: 37.44
- type: mrr_at_3
value: 33.762
- type: mrr_at_5
value: 35.234
- type: ndcg_at_1
value: 27.668
- type: ndcg_at_10
value: 38.043
- type: ndcg_at_100
value: 44.21
- type: ndcg_at_1000
value: 46.748
- type: ndcg_at_3
value: 32.981
- type: ndcg_at_5
value: 35.58
- type: precision_at_1
value: 27.668
- type: precision_at_10
value: 7.352
- type: precision_at_100
value: 1.5
- type: precision_at_1000
value: 0.23700000000000002
- type: precision_at_3
value: 15.613
- type: precision_at_5
value: 11.501999999999999
- type: recall_at_1
value: 23.211000000000002
- type: recall_at_10
value: 49.851
- type: recall_at_100
value: 77.596
- type: recall_at_1000
value: 93.683
- type: recall_at_3
value: 35.403
- type: recall_at_5
value: 42.485
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackWordpressRetrieval
type: mteb/cqadupstack-wordpress
config: default
split: test
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
metrics:
- type: map_at_1
value: 19.384
- type: map_at_10
value: 26.262999999999998
- type: map_at_100
value: 27.409
- type: map_at_1000
value: 27.526
- type: map_at_3
value: 23.698
- type: map_at_5
value: 25.217
- type: mrr_at_1
value: 20.702
- type: mrr_at_10
value: 27.810000000000002
- type: mrr_at_100
value: 28.863
- type: mrr_at_1000
value: 28.955
- type: mrr_at_3
value: 25.230999999999998
- type: mrr_at_5
value: 26.821
- type: ndcg_at_1
value: 20.702
- type: ndcg_at_10
value: 30.688
- type: ndcg_at_100
value: 36.138999999999996
- type: ndcg_at_1000
value: 38.984
- type: ndcg_at_3
value: 25.663000000000004
- type: ndcg_at_5
value: 28.242
- type: precision_at_1
value: 20.702
- type: precision_at_10
value: 4.954
- type: precision_at_100
value: 0.823
- type: precision_at_1000
value: 0.11800000000000001
- type: precision_at_3
value: 10.844
- type: precision_at_5
value: 8.096
- type: recall_at_1
value: 19.384
- type: recall_at_10
value: 42.847
- type: recall_at_100
value: 67.402
- type: recall_at_1000
value: 88.145
- type: recall_at_3
value: 29.513
- type: recall_at_5
value: 35.57
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: mteb/climate-fever
config: default
split: test
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
metrics:
- type: map_at_1
value: 14.915000000000001
- type: map_at_10
value: 25.846999999999998
- type: map_at_100
value: 27.741
- type: map_at_1000
value: 27.921000000000003
- type: map_at_3
value: 21.718
- type: map_at_5
value: 23.948
- type: mrr_at_1
value: 33.941
- type: mrr_at_10
value: 46.897
- type: mrr_at_100
value: 47.63
- type: mrr_at_1000
value: 47.658
- type: mrr_at_3
value: 43.919999999999995
- type: mrr_at_5
value: 45.783
- type: ndcg_at_1
value: 33.941
- type: ndcg_at_10
value: 35.202
- type: ndcg_at_100
value: 42.132
- type: ndcg_at_1000
value: 45.190999999999995
- type: ndcg_at_3
value: 29.68
- type: ndcg_at_5
value: 31.631999999999998
- type: precision_at_1
value: 33.941
- type: precision_at_10
value: 10.906
- type: precision_at_100
value: 1.8339999999999999
- type: precision_at_1000
value: 0.241
- type: precision_at_3
value: 22.606
- type: precision_at_5
value: 17.081
- type: recall_at_1
value: 14.915000000000001
- type: recall_at_10
value: 40.737
- type: recall_at_100
value: 64.42
- type: recall_at_1000
value: 81.435
- type: recall_at_3
value: 26.767000000000003
- type: recall_at_5
value: 32.895
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: mteb/dbpedia
config: default
split: test
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
metrics:
- type: map_at_1
value: 8.665000000000001
- type: map_at_10
value: 19.087
- type: map_at_100
value: 26.555
- type: map_at_1000
value: 28.105999999999998
- type: map_at_3
value: 13.858999999999998
- type: map_at_5
value: 16.083
- type: mrr_at_1
value: 68.5
- type: mrr_at_10
value: 76.725
- type: mrr_at_100
value: 76.974
- type: mrr_at_1000
value: 76.981
- type: mrr_at_3
value: 75.583
- type: mrr_at_5
value: 76.208
- type: ndcg_at_1
value: 55.875
- type: ndcg_at_10
value: 41.018
- type: ndcg_at_100
value: 44.982
- type: ndcg_at_1000
value: 52.43
- type: ndcg_at_3
value: 46.534
- type: ndcg_at_5
value: 43.083
- type: precision_at_1
value: 68.5
- type: precision_at_10
value: 32.35
- type: precision_at_100
value: 10.078
- type: precision_at_1000
value: 1.957
- type: precision_at_3
value: 50.083
- type: precision_at_5
value: 41.3
- type: recall_at_1
value: 8.665000000000001
- type: recall_at_10
value: 24.596999999999998
- type: recall_at_100
value: 50.612
- type: recall_at_1000
value: 74.24
- type: recall_at_3
value: 15.337
- type: recall_at_5
value: 18.796
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 55.06500000000001
- type: f1
value: 49.827367590822035
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: mteb/fever
config: default
split: test
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
metrics:
- type: map_at_1
value: 76.059
- type: map_at_10
value: 83.625
- type: map_at_100
value: 83.845
- type: map_at_1000
value: 83.858
- type: map_at_3
value: 82.67099999999999
- type: map_at_5
value: 83.223
- type: mrr_at_1
value: 82.013
- type: mrr_at_10
value: 88.44800000000001
- type: mrr_at_100
value: 88.535
- type: mrr_at_1000
value: 88.537
- type: mrr_at_3
value: 87.854
- type: mrr_at_5
value: 88.221
- type: ndcg_at_1
value: 82.013
- type: ndcg_at_10
value: 87.128
- type: ndcg_at_100
value: 87.922
- type: ndcg_at_1000
value: 88.166
- type: ndcg_at_3
value: 85.648
- type: ndcg_at_5
value: 86.366
- type: precision_at_1
value: 82.013
- type: precision_at_10
value: 10.32
- type: precision_at_100
value: 1.093
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 32.408
- type: precision_at_5
value: 19.973
- type: recall_at_1
value: 76.059
- type: recall_at_10
value: 93.229
- type: recall_at_100
value: 96.387
- type: recall_at_1000
value: 97.916
- type: recall_at_3
value: 89.025
- type: recall_at_5
value: 90.96300000000001
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: mteb/fiqa
config: default
split: test
revision: 27a168819829fe9bcd655c2df245fb19452e8e06
metrics:
- type: map_at_1
value: 20.479
- type: map_at_10
value: 33.109
- type: map_at_100
value: 34.803
- type: map_at_1000
value: 35.003
- type: map_at_3
value: 28.967
- type: map_at_5
value: 31.385
- type: mrr_at_1
value: 40.278000000000006
- type: mrr_at_10
value: 48.929
- type: mrr_at_100
value: 49.655
- type: mrr_at_1000
value: 49.691
- type: mrr_at_3
value: 46.605000000000004
- type: mrr_at_5
value: 48.056
- type: ndcg_at_1
value: 40.278000000000006
- type: ndcg_at_10
value: 40.649
- type: ndcg_at_100
value: 47.027
- type: ndcg_at_1000
value: 50.249
- type: ndcg_at_3
value: 37.364000000000004
- type: ndcg_at_5
value: 38.494
- type: precision_at_1
value: 40.278000000000006
- type: precision_at_10
value: 11.327
- type: precision_at_100
value: 1.802
- type: precision_at_1000
value: 0.23700000000000002
- type: precision_at_3
value: 25.102999999999998
- type: precision_at_5
value: 18.457
- type: recall_at_1
value: 20.479
- type: recall_at_10
value: 46.594
- type: recall_at_100
value: 71.101
- type: recall_at_1000
value: 90.31099999999999
- type: recall_at_3
value: 33.378
- type: recall_at_5
value: 39.587
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: mteb/hotpotqa
config: default
split: test
revision: ab518f4d6fcca38d87c25209f94beba119d02014
metrics:
- type: map_at_1
value: 36.59
- type: map_at_10
value: 58.178
- type: map_at_100
value: 59.095
- type: map_at_1000
value: 59.16400000000001
- type: map_at_3
value: 54.907
- type: map_at_5
value: 56.89999999999999
- type: mrr_at_1
value: 73.18
- type: mrr_at_10
value: 79.935
- type: mrr_at_100
value: 80.16799999999999
- type: mrr_at_1000
value: 80.17800000000001
- type: mrr_at_3
value: 78.776
- type: mrr_at_5
value: 79.522
- type: ndcg_at_1
value: 73.18
- type: ndcg_at_10
value: 66.538
- type: ndcg_at_100
value: 69.78
- type: ndcg_at_1000
value: 71.102
- type: ndcg_at_3
value: 61.739
- type: ndcg_at_5
value: 64.35600000000001
- type: precision_at_1
value: 73.18
- type: precision_at_10
value: 14.035
- type: precision_at_100
value: 1.657
- type: precision_at_1000
value: 0.183
- type: precision_at_3
value: 39.684999999999995
- type: precision_at_5
value: 25.885
- type: recall_at_1
value: 36.59
- type: recall_at_10
value: 70.176
- type: recall_at_100
value: 82.836
- type: recall_at_1000
value: 91.526
- type: recall_at_3
value: 59.526999999999994
- type: recall_at_5
value: 64.713
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 90.1472
- type: ap
value: 85.73994227076815
- type: f1
value: 90.1271700788608
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: mteb/msmarco
config: default
split: dev
revision: c5a29a104738b98a9e76336939199e264163d4a0
metrics:
- type: map_at_1
value: 21.689
- type: map_at_10
value: 33.518
- type: map_at_100
value: 34.715
- type: map_at_1000
value: 34.766000000000005
- type: map_at_3
value: 29.781000000000002
- type: map_at_5
value: 31.838
- type: mrr_at_1
value: 22.249
- type: mrr_at_10
value: 34.085
- type: mrr_at_100
value: 35.223
- type: mrr_at_1000
value: 35.266999999999996
- type: mrr_at_3
value: 30.398999999999997
- type: mrr_at_5
value: 32.437
- type: ndcg_at_1
value: 22.249
- type: ndcg_at_10
value: 40.227000000000004
- type: ndcg_at_100
value: 45.961999999999996
- type: ndcg_at_1000
value: 47.248000000000005
- type: ndcg_at_3
value: 32.566
- type: ndcg_at_5
value: 36.229
- type: precision_at_1
value: 22.249
- type: precision_at_10
value: 6.358
- type: precision_at_100
value: 0.923
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_3
value: 13.83
- type: precision_at_5
value: 10.145999999999999
- type: recall_at_1
value: 21.689
- type: recall_at_10
value: 60.92999999999999
- type: recall_at_100
value: 87.40599999999999
- type: recall_at_1000
value: 97.283
- type: recall_at_3
value: 40.01
- type: recall_at_5
value: 48.776
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 95.28727770177838
- type: f1
value: 95.02577308660041
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 79.5736434108527
- type: f1
value: 61.2451202054398
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 76.01210490921318
- type: f1
value: 73.70188053982473
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 79.33422999327504
- type: f1
value: 79.48369022509658
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 34.70891567267726
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 32.15203494451706
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.919517862194173
- type: mrr
value: 33.15466289140483
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: mteb/nfcorpus
config: default
split: test
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
metrics:
- type: map_at_1
value: 5.992
- type: map_at_10
value: 13.197000000000001
- type: map_at_100
value: 16.907
- type: map_at_1000
value: 18.44
- type: map_at_3
value: 9.631
- type: map_at_5
value: 11.243
- type: mrr_at_1
value: 44.272
- type: mrr_at_10
value: 53.321
- type: mrr_at_100
value: 53.903
- type: mrr_at_1000
value: 53.952999999999996
- type: mrr_at_3
value: 51.393
- type: mrr_at_5
value: 52.708999999999996
- type: ndcg_at_1
value: 42.415000000000006
- type: ndcg_at_10
value: 34.921
- type: ndcg_at_100
value: 32.384
- type: ndcg_at_1000
value: 41.260000000000005
- type: ndcg_at_3
value: 40.186
- type: ndcg_at_5
value: 37.89
- type: precision_at_1
value: 44.272
- type: precision_at_10
value: 26.006
- type: precision_at_100
value: 8.44
- type: precision_at_1000
value: 2.136
- type: precision_at_3
value: 37.977
- type: precision_at_5
value: 32.755
- type: recall_at_1
value: 5.992
- type: recall_at_10
value: 17.01
- type: recall_at_100
value: 33.080999999999996
- type: recall_at_1000
value: 65.054
- type: recall_at_3
value: 10.528
- type: recall_at_5
value: 13.233
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: mteb/nq
config: default
split: test
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
metrics:
- type: map_at_1
value: 28.871999999999996
- type: map_at_10
value: 43.286
- type: map_at_100
value: 44.432
- type: map_at_1000
value: 44.464999999999996
- type: map_at_3
value: 38.856
- type: map_at_5
value: 41.514
- type: mrr_at_1
value: 32.619
- type: mrr_at_10
value: 45.75
- type: mrr_at_100
value: 46.622
- type: mrr_at_1000
value: 46.646
- type: mrr_at_3
value: 41.985
- type: mrr_at_5
value: 44.277
- type: ndcg_at_1
value: 32.59
- type: ndcg_at_10
value: 50.895999999999994
- type: ndcg_at_100
value: 55.711999999999996
- type: ndcg_at_1000
value: 56.48800000000001
- type: ndcg_at_3
value: 42.504999999999995
- type: ndcg_at_5
value: 46.969
- type: precision_at_1
value: 32.59
- type: precision_at_10
value: 8.543000000000001
- type: precision_at_100
value: 1.123
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 19.448
- type: precision_at_5
value: 14.218
- type: recall_at_1
value: 28.871999999999996
- type: recall_at_10
value: 71.748
- type: recall_at_100
value: 92.55499999999999
- type: recall_at_1000
value: 98.327
- type: recall_at_3
value: 49.944
- type: recall_at_5
value: 60.291
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: mteb/quora
config: default
split: test
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
metrics:
- type: map_at_1
value: 70.664
- type: map_at_10
value: 84.681
- type: map_at_100
value: 85.289
- type: map_at_1000
value: 85.306
- type: map_at_3
value: 81.719
- type: map_at_5
value: 83.601
- type: mrr_at_1
value: 81.35
- type: mrr_at_10
value: 87.591
- type: mrr_at_100
value: 87.691
- type: mrr_at_1000
value: 87.693
- type: mrr_at_3
value: 86.675
- type: mrr_at_5
value: 87.29299999999999
- type: ndcg_at_1
value: 81.33
- type: ndcg_at_10
value: 88.411
- type: ndcg_at_100
value: 89.579
- type: ndcg_at_1000
value: 89.687
- type: ndcg_at_3
value: 85.613
- type: ndcg_at_5
value: 87.17
- type: precision_at_1
value: 81.33
- type: precision_at_10
value: 13.422
- type: precision_at_100
value: 1.5270000000000001
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.463
- type: precision_at_5
value: 24.646
- type: recall_at_1
value: 70.664
- type: recall_at_10
value: 95.54
- type: recall_at_100
value: 99.496
- type: recall_at_1000
value: 99.978
- type: recall_at_3
value: 87.481
- type: recall_at_5
value: 91.88499999999999
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 55.40341814991112
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
metrics:
- type: v_measure
value: 61.231318481346655
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: mteb/scidocs
config: default
split: test
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
metrics:
- type: map_at_1
value: 4.833
- type: map_at_10
value: 13.149
- type: map_at_100
value: 15.578
- type: map_at_1000
value: 15.963
- type: map_at_3
value: 9.269
- type: map_at_5
value: 11.182
- type: mrr_at_1
value: 23.9
- type: mrr_at_10
value: 35.978
- type: mrr_at_100
value: 37.076
- type: mrr_at_1000
value: 37.126
- type: mrr_at_3
value: 32.333
- type: mrr_at_5
value: 34.413
- type: ndcg_at_1
value: 23.9
- type: ndcg_at_10
value: 21.823
- type: ndcg_at_100
value: 30.833
- type: ndcg_at_1000
value: 36.991
- type: ndcg_at_3
value: 20.465
- type: ndcg_at_5
value: 17.965999999999998
- type: precision_at_1
value: 23.9
- type: precision_at_10
value: 11.49
- type: precision_at_100
value: 2.444
- type: precision_at_1000
value: 0.392
- type: precision_at_3
value: 19.3
- type: precision_at_5
value: 15.959999999999999
- type: recall_at_1
value: 4.833
- type: recall_at_10
value: 23.294999999999998
- type: recall_at_100
value: 49.63
- type: recall_at_1000
value: 79.49199999999999
- type: recall_at_3
value: 11.732
- type: recall_at_5
value: 16.167
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
metrics:
- type: cos_sim_pearson
value: 85.62938108735759
- type: cos_sim_spearman
value: 80.30777094408789
- type: euclidean_pearson
value: 82.94516686659536
- type: euclidean_spearman
value: 80.34489663248169
- type: manhattan_pearson
value: 82.85830094736245
- type: manhattan_spearman
value: 80.24902623215449
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 85.23777464247604
- type: cos_sim_spearman
value: 75.75714864112797
- type: euclidean_pearson
value: 82.33806918604493
- type: euclidean_spearman
value: 75.45282124387357
- type: manhattan_pearson
value: 82.32555620660538
- type: manhattan_spearman
value: 75.49228731684082
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 84.88151620954451
- type: cos_sim_spearman
value: 86.08377598473446
- type: euclidean_pearson
value: 85.36958329369413
- type: euclidean_spearman
value: 86.10274219670679
- type: manhattan_pearson
value: 85.25873897594711
- type: manhattan_spearman
value: 85.98096461661584
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 84.29360558735978
- type: cos_sim_spearman
value: 82.28284203795577
- type: euclidean_pearson
value: 83.81636655536633
- type: euclidean_spearman
value: 82.24340438530236
- type: manhattan_pearson
value: 83.83914453428608
- type: manhattan_spearman
value: 82.28391354080694
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.47344180426744
- type: cos_sim_spearman
value: 88.90045649789438
- type: euclidean_pearson
value: 88.43020815961273
- type: euclidean_spearman
value: 89.0087449011776
- type: manhattan_pearson
value: 88.37601826505525
- type: manhattan_spearman
value: 88.96756360690617
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.35997025304613
- type: cos_sim_spearman
value: 85.18237675717147
- type: euclidean_pearson
value: 84.46478196990202
- type: euclidean_spearman
value: 85.27748677712205
- type: manhattan_pearson
value: 84.29342543953123
- type: manhattan_spearman
value: 85.10579612516567
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 88.56668329596836
- type: cos_sim_spearman
value: 88.72837234129177
- type: euclidean_pearson
value: 89.39395650897828
- type: euclidean_spearman
value: 88.82001247906778
- type: manhattan_pearson
value: 89.41735354368878
- type: manhattan_spearman
value: 88.95159141850039
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: eea2b4fe26a775864c896887d910b76a8098ad3f
metrics:
- type: cos_sim_pearson
value: 67.466167902991
- type: cos_sim_spearman
value: 68.54466147197274
- type: euclidean_pearson
value: 69.35551179564695
- type: euclidean_spearman
value: 68.75455717749132
- type: manhattan_pearson
value: 69.42432368208264
- type: manhattan_spearman
value: 68.83203709670562
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 85.33241300373689
- type: cos_sim_spearman
value: 86.97909372129874
- type: euclidean_pearson
value: 86.99526113559924
- type: euclidean_spearman
value: 87.02644372623219
- type: manhattan_pearson
value: 86.78744182759846
- type: manhattan_spearman
value: 86.8886180198196
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 86.18374413668717
- type: mrr
value: 95.93213068703264
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: mteb/scifact
config: default
split: test
revision: 0228b52cf27578f30900b9e5271d331663a030d7
metrics:
- type: map_at_1
value: 58.31699999999999
- type: map_at_10
value: 67.691
- type: map_at_100
value: 68.201
- type: map_at_1000
value: 68.232
- type: map_at_3
value: 64.47800000000001
- type: map_at_5
value: 66.51
- type: mrr_at_1
value: 61.0
- type: mrr_at_10
value: 68.621
- type: mrr_at_100
value: 68.973
- type: mrr_at_1000
value: 69.002
- type: mrr_at_3
value: 66.111
- type: mrr_at_5
value: 67.578
- type: ndcg_at_1
value: 61.0
- type: ndcg_at_10
value: 72.219
- type: ndcg_at_100
value: 74.397
- type: ndcg_at_1000
value: 75.021
- type: ndcg_at_3
value: 66.747
- type: ndcg_at_5
value: 69.609
- type: precision_at_1
value: 61.0
- type: precision_at_10
value: 9.6
- type: precision_at_100
value: 1.08
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 25.667
- type: precision_at_5
value: 17.267
- type: recall_at_1
value: 58.31699999999999
- type: recall_at_10
value: 85.233
- type: recall_at_100
value: 95.167
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 70.589
- type: recall_at_5
value: 77.628
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.83267326732673
- type: cos_sim_ap
value: 96.13707107038228
- type: cos_sim_f1
value: 91.48830263812842
- type: cos_sim_precision
value: 91.0802775024777
- type: cos_sim_recall
value: 91.9
- type: dot_accuracy
value: 99.83069306930693
- type: dot_ap
value: 96.21199069147254
- type: dot_f1
value: 91.36295556665004
- type: dot_precision
value: 91.22632103688933
- type: dot_recall
value: 91.5
- type: euclidean_accuracy
value: 99.83267326732673
- type: euclidean_ap
value: 96.08957801367436
- type: euclidean_f1
value: 91.33004926108374
- type: euclidean_precision
value: 90.0
- type: euclidean_recall
value: 92.7
- type: manhattan_accuracy
value: 99.83564356435643
- type: manhattan_ap
value: 96.10534946461945
- type: manhattan_f1
value: 91.74950298210736
- type: manhattan_precision
value: 91.20553359683794
- type: manhattan_recall
value: 92.30000000000001
- type: max_accuracy
value: 99.83564356435643
- type: max_ap
value: 96.21199069147254
- type: max_f1
value: 91.74950298210736
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 62.045718843534736
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 36.6501777041092
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 52.963913408053955
- type: mrr
value: 53.87972423818012
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.44195730764998
- type: cos_sim_spearman
value: 30.59626288679397
- type: dot_pearson
value: 30.22974492404086
- type: dot_spearman
value: 29.345245972906497
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: mteb/trec-covid
config: default
split: test
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
metrics:
- type: map_at_1
value: 0.24
- type: map_at_10
value: 2.01
- type: map_at_100
value: 11.928999999999998
- type: map_at_1000
value: 29.034
- type: map_at_3
value: 0.679
- type: map_at_5
value: 1.064
- type: mrr_at_1
value: 92.0
- type: mrr_at_10
value: 96.0
- type: mrr_at_100
value: 96.0
- type: mrr_at_1000
value: 96.0
- type: mrr_at_3
value: 96.0
- type: mrr_at_5
value: 96.0
- type: ndcg_at_1
value: 87.0
- type: ndcg_at_10
value: 80.118
- type: ndcg_at_100
value: 60.753
- type: ndcg_at_1000
value: 54.632999999999996
- type: ndcg_at_3
value: 83.073
- type: ndcg_at_5
value: 80.733
- type: precision_at_1
value: 92.0
- type: precision_at_10
value: 84.8
- type: precision_at_100
value: 62.019999999999996
- type: precision_at_1000
value: 24.028
- type: precision_at_3
value: 87.333
- type: precision_at_5
value: 85.2
- type: recall_at_1
value: 0.24
- type: recall_at_10
value: 2.205
- type: recall_at_100
value: 15.068000000000001
- type: recall_at_1000
value: 51.796
- type: recall_at_3
value: 0.698
- type: recall_at_5
value: 1.1199999999999999
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: mteb/touche2020
config: default
split: test
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
metrics:
- type: map_at_1
value: 3.066
- type: map_at_10
value: 9.219
- type: map_at_100
value: 15.387
- type: map_at_1000
value: 16.957
- type: map_at_3
value: 5.146
- type: map_at_5
value: 6.6739999999999995
- type: mrr_at_1
value: 40.816
- type: mrr_at_10
value: 50.844
- type: mrr_at_100
value: 51.664
- type: mrr_at_1000
value: 51.664
- type: mrr_at_3
value: 46.259
- type: mrr_at_5
value: 49.116
- type: ndcg_at_1
value: 37.755
- type: ndcg_at_10
value: 23.477
- type: ndcg_at_100
value: 36.268
- type: ndcg_at_1000
value: 47.946
- type: ndcg_at_3
value: 25.832
- type: ndcg_at_5
value: 24.235
- type: precision_at_1
value: 40.816
- type: precision_at_10
value: 20.204
- type: precision_at_100
value: 7.611999999999999
- type: precision_at_1000
value: 1.543
- type: precision_at_3
value: 25.169999999999998
- type: precision_at_5
value: 23.265
- type: recall_at_1
value: 3.066
- type: recall_at_10
value: 14.985999999999999
- type: recall_at_100
value: 47.902
- type: recall_at_1000
value: 83.56400000000001
- type: recall_at_3
value: 5.755
- type: recall_at_5
value: 8.741999999999999
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
metrics:
- type: accuracy
value: 69.437
- type: ap
value: 12.844066827082706
- type: f1
value: 52.74974809872495
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.26768534238823
- type: f1
value: 61.65100187399282
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 49.860968711078804
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.7423854085951
- type: cos_sim_ap
value: 73.47560303339571
- type: cos_sim_f1
value: 67.372778183589
- type: cos_sim_precision
value: 62.54520795660036
- type: cos_sim_recall
value: 73.00791556728232
- type: dot_accuracy
value: 85.36091077069798
- type: dot_ap
value: 72.42521572307255
- type: dot_f1
value: 66.90576304724215
- type: dot_precision
value: 62.96554934823091
- type: dot_recall
value: 71.37203166226914
- type: euclidean_accuracy
value: 85.76026703224653
- type: euclidean_ap
value: 73.44852563860128
- type: euclidean_f1
value: 67.3
- type: euclidean_precision
value: 63.94299287410926
- type: euclidean_recall
value: 71.02902374670185
- type: manhattan_accuracy
value: 85.7423854085951
- type: manhattan_ap
value: 73.2635034755551
- type: manhattan_f1
value: 67.3180263800684
- type: manhattan_precision
value: 62.66484765802638
- type: manhattan_recall
value: 72.71767810026385
- type: max_accuracy
value: 85.76026703224653
- type: max_ap
value: 73.47560303339571
- type: max_f1
value: 67.372778183589
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.67543757519307
- type: cos_sim_ap
value: 85.35516518531304
- type: cos_sim_f1
value: 77.58197635511934
- type: cos_sim_precision
value: 75.01078360891445
- type: cos_sim_recall
value: 80.33569448721897
- type: dot_accuracy
value: 87.61400240617844
- type: dot_ap
value: 83.0774968268665
- type: dot_f1
value: 75.68229012162561
- type: dot_precision
value: 72.99713876967095
- type: dot_recall
value: 78.57252848783493
- type: euclidean_accuracy
value: 88.73753250281368
- type: euclidean_ap
value: 85.48043564821317
- type: euclidean_f1
value: 77.75975862719216
- type: euclidean_precision
value: 76.21054187920456
- type: euclidean_recall
value: 79.37326763166
- type: manhattan_accuracy
value: 88.75111576823068
- type: manhattan_ap
value: 85.44993439423668
- type: manhattan_f1
value: 77.6861329994845
- type: manhattan_precision
value: 74.44601270289344
- type: manhattan_recall
value: 81.22112719433323
- type: max_accuracy
value: 88.75111576823068
- type: max_ap
value: 85.48043564821317
- type: max_f1
value: 77.75975862719216
---
# twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF
This model was converted to GGUF format from [`avsolatorio/NoInstruct-small-Embedding-v0`](https://huggingface.co./avsolatorio/NoInstruct-small-Embedding-v0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co./avsolatorio/NoInstruct-small-Embedding-v0) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -c 2048
```