|
--- |
|
tags: |
|
- mteb |
|
model-index: |
|
- name: nomic_classification_prompt_domain_sample |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 74.53731343283583 |
|
- type: ap |
|
value: 37.92571498384035 |
|
- type: f1 |
|
value: 68.77042705445326 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 66.16017500000001 |
|
- type: ap |
|
value: 61.42247172783104 |
|
- type: f1 |
|
value: 65.38166709014324 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 34.396 |
|
- type: f1 |
|
value: 33.71300766345019 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 21.55 |
|
- type: map_at_10 |
|
value: 35.845 |
|
- type: map_at_100 |
|
value: 36.995 |
|
- type: map_at_1000 |
|
value: 37.018 |
|
- type: map_at_3 |
|
value: 30.856 |
|
- type: map_at_5 |
|
value: 33.605000000000004 |
|
- type: mrr_at_1 |
|
value: 22.048000000000002 |
|
- type: mrr_at_10 |
|
value: 36.039 |
|
- type: mrr_at_100 |
|
value: 37.181 |
|
- type: mrr_at_1000 |
|
value: 37.205 |
|
- type: mrr_at_3 |
|
value: 31.022 |
|
- type: mrr_at_5 |
|
value: 33.757 |
|
- type: ndcg_at_1 |
|
value: 21.55 |
|
- type: ndcg_at_10 |
|
value: 44.241 |
|
- type: ndcg_at_100 |
|
value: 49.457 |
|
- type: ndcg_at_1000 |
|
value: 50.024 |
|
- type: ndcg_at_3 |
|
value: 33.873999999999995 |
|
- type: ndcg_at_5 |
|
value: 38.826 |
|
- type: precision_at_1 |
|
value: 21.55 |
|
- type: precision_at_10 |
|
value: 7.134 |
|
- type: precision_at_100 |
|
value: 0.9490000000000001 |
|
- type: precision_at_1000 |
|
value: 0.099 |
|
- type: precision_at_3 |
|
value: 14.201 |
|
- type: precision_at_5 |
|
value: 10.925 |
|
- type: recall_at_1 |
|
value: 21.55 |
|
- type: recall_at_10 |
|
value: 71.33699999999999 |
|
- type: recall_at_100 |
|
value: 94.879 |
|
- type: recall_at_1000 |
|
value: 99.21799999999999 |
|
- type: recall_at_3 |
|
value: 42.603 |
|
- type: recall_at_5 |
|
value: 54.623 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 34.77701037657294 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 24.616534607718528 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: None |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 54.39039727853101 |
|
- type: mrr |
|
value: 68.89240645473332 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.96093442776794 |
|
- type: cos_sim_spearman |
|
value: 79.80362560866212 |
|
- type: euclidean_pearson |
|
value: 81.2337598243594 |
|
- type: euclidean_spearman |
|
value: 79.80362560866212 |
|
- type: manhattan_pearson |
|
value: 80.54695854084805 |
|
- type: manhattan_spearman |
|
value: 79.70904514032895 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 72.1103896103896 |
|
- type: f1 |
|
value: 71.0424629611518 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 32.160979697519885 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 23.63609395107967 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackAndroidRetrieval |
|
config: default |
|
split: test |
|
revision: f46a197baaae43b4f621051089b82a364682dfeb |
|
metrics: |
|
- type: map_at_1 |
|
value: 22.972 |
|
- type: map_at_10 |
|
value: 31.483 |
|
- type: map_at_100 |
|
value: 32.58 |
|
- type: map_at_1000 |
|
value: 32.732 |
|
- type: map_at_3 |
|
value: 28.822 |
|
- type: map_at_5 |
|
value: 30.412 |
|
- type: mrr_at_1 |
|
value: 28.754999999999995 |
|
- type: mrr_at_10 |
|
value: 37.302 |
|
- type: mrr_at_100 |
|
value: 38.065 |
|
- type: mrr_at_1000 |
|
value: 38.132 |
|
- type: mrr_at_3 |
|
value: 35.074 |
|
- type: mrr_at_5 |
|
value: 36.504999999999995 |
|
- type: ndcg_at_1 |
|
value: 28.754999999999995 |
|
- type: ndcg_at_10 |
|
value: 36.9 |
|
- type: ndcg_at_100 |
|
value: 41.785 |
|
- type: ndcg_at_1000 |
|
value: 44.861000000000004 |
|
- type: ndcg_at_3 |
|
value: 33.013999999999996 |
|
- type: ndcg_at_5 |
|
value: 34.966 |
|
- type: precision_at_1 |
|
value: 28.754999999999995 |
|
- type: precision_at_10 |
|
value: 7.053 |
|
- type: precision_at_100 |
|
value: 1.1860000000000002 |
|
- type: precision_at_1000 |
|
value: 0.17500000000000002 |
|
- type: precision_at_3 |
|
value: 16.023 |
|
- type: precision_at_5 |
|
value: 11.76 |
|
- type: recall_at_1 |
|
value: 22.972 |
|
- type: recall_at_10 |
|
value: 46.699 |
|
- type: recall_at_100 |
|
value: 68.476 |
|
- type: recall_at_1000 |
|
value: 89.461 |
|
- type: recall_at_3 |
|
value: 34.792 |
|
- type: recall_at_5 |
|
value: 40.453 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackEnglishRetrieval |
|
config: default |
|
split: test |
|
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.001 |
|
- type: map_at_10 |
|
value: 24.213 |
|
- type: map_at_100 |
|
value: 25.184 |
|
- type: map_at_1000 |
|
value: 25.301000000000002 |
|
- type: map_at_3 |
|
value: 22.157 |
|
- type: map_at_5 |
|
value: 23.357 |
|
- type: mrr_at_1 |
|
value: 22.93 |
|
- type: mrr_at_10 |
|
value: 28.843000000000004 |
|
- type: mrr_at_100 |
|
value: 29.637999999999998 |
|
- type: mrr_at_1000 |
|
value: 29.706 |
|
- type: mrr_at_3 |
|
value: 26.868 |
|
- type: mrr_at_5 |
|
value: 28.021 |
|
- type: ndcg_at_1 |
|
value: 22.93 |
|
- type: ndcg_at_10 |
|
value: 28.337 |
|
- type: ndcg_at_100 |
|
value: 32.696 |
|
- type: ndcg_at_1000 |
|
value: 35.483 |
|
- type: ndcg_at_3 |
|
value: 24.909 |
|
- type: ndcg_at_5 |
|
value: 26.601999999999997 |
|
- type: precision_at_1 |
|
value: 22.93 |
|
- type: precision_at_10 |
|
value: 5.255 |
|
- type: precision_at_100 |
|
value: 0.9199999999999999 |
|
- type: precision_at_1000 |
|
value: 0.14300000000000002 |
|
- type: precision_at_3 |
|
value: 11.911 |
|
- type: precision_at_5 |
|
value: 8.599 |
|
- type: recall_at_1 |
|
value: 18.001 |
|
- type: recall_at_10 |
|
value: 36.047000000000004 |
|
- type: recall_at_100 |
|
value: 55.123999999999995 |
|
- type: recall_at_1000 |
|
value: 73.919 |
|
- type: recall_at_3 |
|
value: 26.230999999999998 |
|
- type: recall_at_5 |
|
value: 30.791 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackGamingRetrieval |
|
config: default |
|
split: test |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.74 |
|
- type: map_at_10 |
|
value: 36.899 |
|
- type: map_at_100 |
|
value: 38.021 |
|
- type: map_at_1000 |
|
value: 38.115 |
|
- type: map_at_3 |
|
value: 34.226 |
|
- type: map_at_5 |
|
value: 35.791000000000004 |
|
- type: mrr_at_1 |
|
value: 32.038 |
|
- type: mrr_at_10 |
|
value: 40.196 |
|
- type: mrr_at_100 |
|
value: 41.099000000000004 |
|
- type: mrr_at_1000 |
|
value: 41.159 |
|
- type: mrr_at_3 |
|
value: 37.858000000000004 |
|
- type: mrr_at_5 |
|
value: 39.262 |
|
- type: ndcg_at_1 |
|
value: 32.038 |
|
- type: ndcg_at_10 |
|
value: 41.835 |
|
- type: ndcg_at_100 |
|
value: 46.957 |
|
- type: ndcg_at_1000 |
|
value: 49.132 |
|
- type: ndcg_at_3 |
|
value: 37.03 |
|
- type: ndcg_at_5 |
|
value: 39.466 |
|
- type: precision_at_1 |
|
value: 32.038 |
|
- type: precision_at_10 |
|
value: 6.771000000000001 |
|
- type: precision_at_100 |
|
value: 1.027 |
|
- type: precision_at_1000 |
|
value: 0.129 |
|
- type: precision_at_3 |
|
value: 16.405 |
|
- type: precision_at_5 |
|
value: 11.549 |
|
- type: recall_at_1 |
|
value: 27.74 |
|
- type: recall_at_10 |
|
value: 53.43599999999999 |
|
- type: recall_at_100 |
|
value: 76.239 |
|
- type: recall_at_1000 |
|
value: 92.038 |
|
- type: recall_at_3 |
|
value: 40.625 |
|
- type: recall_at_5 |
|
value: 46.483000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackGisRetrieval |
|
config: default |
|
split: test |
|
revision: 5003b3064772da1887988e05400cf3806fe491f2 |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.71 |
|
- type: map_at_10 |
|
value: 18.269 |
|
- type: map_at_100 |
|
value: 19.095000000000002 |
|
- type: map_at_1000 |
|
value: 19.206 |
|
- type: map_at_3 |
|
value: 16.667 |
|
- type: map_at_5 |
|
value: 17.461 |
|
- type: mrr_at_1 |
|
value: 14.915000000000001 |
|
- type: mrr_at_10 |
|
value: 19.6 |
|
- type: mrr_at_100 |
|
value: 20.429 |
|
- type: mrr_at_1000 |
|
value: 20.527 |
|
- type: mrr_at_3 |
|
value: 18.041 |
|
- type: mrr_at_5 |
|
value: 18.826999999999998 |
|
- type: ndcg_at_1 |
|
value: 14.915000000000001 |
|
- type: ndcg_at_10 |
|
value: 21.197 |
|
- type: ndcg_at_100 |
|
value: 25.790999999999997 |
|
- type: ndcg_at_1000 |
|
value: 29.15 |
|
- type: ndcg_at_3 |
|
value: 17.947 |
|
- type: ndcg_at_5 |
|
value: 19.316 |
|
- type: precision_at_1 |
|
value: 14.915000000000001 |
|
- type: precision_at_10 |
|
value: 3.277 |
|
- type: precision_at_100 |
|
value: 0.601 |
|
- type: precision_at_1000 |
|
value: 0.094 |
|
- type: precision_at_3 |
|
value: 7.495 |
|
- type: precision_at_5 |
|
value: 5.266 |
|
- type: recall_at_1 |
|
value: 13.71 |
|
- type: recall_at_10 |
|
value: 29.104999999999997 |
|
- type: recall_at_100 |
|
value: 51.283 |
|
- type: recall_at_1000 |
|
value: 77.706 |
|
- type: recall_at_3 |
|
value: 20.217 |
|
- type: recall_at_5 |
|
value: 23.465 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
config: default |
|
split: test |
|
revision: 90fceea13679c63fe563ded68f3b6f06e50061de |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.8759999999999994 |
|
- type: map_at_10 |
|
value: 11.171000000000001 |
|
- type: map_at_100 |
|
value: 12.096 |
|
- type: map_at_1000 |
|
value: 12.224 |
|
- type: map_at_3 |
|
value: 10.148 |
|
- type: map_at_5 |
|
value: 10.529 |
|
- type: mrr_at_1 |
|
value: 10.199 |
|
- type: mrr_at_10 |
|
value: 13.789000000000001 |
|
- type: mrr_at_100 |
|
value: 14.789 |
|
- type: mrr_at_1000 |
|
value: 14.887 |
|
- type: mrr_at_3 |
|
value: 12.706999999999999 |
|
- type: mrr_at_5 |
|
value: 13.142999999999999 |
|
- type: ndcg_at_1 |
|
value: 10.199 |
|
- type: ndcg_at_10 |
|
value: 13.602 |
|
- type: ndcg_at_100 |
|
value: 18.54 |
|
- type: ndcg_at_1000 |
|
value: 22.141 |
|
- type: ndcg_at_3 |
|
value: 11.569 |
|
- type: ndcg_at_5 |
|
value: 12.151 |
|
- type: precision_at_1 |
|
value: 10.199 |
|
- type: precision_at_10 |
|
value: 2.488 |
|
- type: precision_at_100 |
|
value: 0.588 |
|
- type: precision_at_1000 |
|
value: 0.10300000000000001 |
|
- type: precision_at_3 |
|
value: 5.473 |
|
- type: precision_at_5 |
|
value: 3.781 |
|
- type: recall_at_1 |
|
value: 7.8759999999999994 |
|
- type: recall_at_10 |
|
value: 18.678 |
|
- type: recall_at_100 |
|
value: 40.818 |
|
- type: recall_at_1000 |
|
value: 67.49000000000001 |
|
- type: recall_at_3 |
|
value: 12.841 |
|
- type: recall_at_5 |
|
value: 14.366999999999999 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
config: default |
|
split: test |
|
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.293 |
|
- type: map_at_10 |
|
value: 24.626 |
|
- type: map_at_100 |
|
value: 25.828 |
|
- type: map_at_1000 |
|
value: 25.964 |
|
- type: map_at_3 |
|
value: 22.439 |
|
- type: map_at_5 |
|
value: 23.541 |
|
- type: mrr_at_1 |
|
value: 22.81 |
|
- type: mrr_at_10 |
|
value: 29.213 |
|
- type: mrr_at_100 |
|
value: 30.188 |
|
- type: mrr_at_1000 |
|
value: 30.258000000000003 |
|
- type: mrr_at_3 |
|
value: 26.933 |
|
- type: mrr_at_5 |
|
value: 28.069 |
|
- type: ndcg_at_1 |
|
value: 22.81 |
|
- type: ndcg_at_10 |
|
value: 29.107 |
|
- type: ndcg_at_100 |
|
value: 34.958 |
|
- type: ndcg_at_1000 |
|
value: 37.968 |
|
- type: ndcg_at_3 |
|
value: 25.144 |
|
- type: ndcg_at_5 |
|
value: 26.769 |
|
- type: precision_at_1 |
|
value: 22.81 |
|
- type: precision_at_10 |
|
value: 5.351 |
|
- type: precision_at_100 |
|
value: 0.9939999999999999 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 11.741999999999999 |
|
- type: precision_at_5 |
|
value: 8.431 |
|
- type: recall_at_1 |
|
value: 18.293 |
|
- type: recall_at_10 |
|
value: 38.315 |
|
- type: recall_at_100 |
|
value: 64.16199999999999 |
|
- type: recall_at_1000 |
|
value: 84.944 |
|
- type: recall_at_3 |
|
value: 27.006000000000004 |
|
- type: recall_at_5 |
|
value: 31.284 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
config: default |
|
split: test |
|
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 |
|
metrics: |
|
- type: map_at_1 |
|
value: 13.896 |
|
- type: map_at_10 |
|
value: 19.695999999999998 |
|
- type: map_at_100 |
|
value: 20.813000000000002 |
|
- type: map_at_1000 |
|
value: 20.953 |
|
- type: map_at_3 |
|
value: 17.657 |
|
- type: map_at_5 |
|
value: 18.752 |
|
- type: mrr_at_1 |
|
value: 17.122999999999998 |
|
- type: mrr_at_10 |
|
value: 23.345 |
|
- type: mrr_at_100 |
|
value: 24.294 |
|
- type: mrr_at_1000 |
|
value: 24.386 |
|
- type: mrr_at_3 |
|
value: 21.404 |
|
- type: mrr_at_5 |
|
value: 22.494 |
|
- type: ndcg_at_1 |
|
value: 17.122999999999998 |
|
- type: ndcg_at_10 |
|
value: 23.692 |
|
- type: ndcg_at_100 |
|
value: 29.012 |
|
- type: ndcg_at_1000 |
|
value: 32.45 |
|
- type: ndcg_at_3 |
|
value: 20.002 |
|
- type: ndcg_at_5 |
|
value: 21.62 |
|
- type: precision_at_1 |
|
value: 17.122999999999998 |
|
- type: precision_at_10 |
|
value: 4.543 |
|
- type: precision_at_100 |
|
value: 0.852 |
|
- type: precision_at_1000 |
|
value: 0.133 |
|
- type: precision_at_3 |
|
value: 9.589 |
|
- type: precision_at_5 |
|
value: 7.1 |
|
- type: recall_at_1 |
|
value: 13.896 |
|
- type: recall_at_10 |
|
value: 32.176 |
|
- type: recall_at_100 |
|
value: 55.382 |
|
- type: recall_at_1000 |
|
value: 79.725 |
|
- type: recall_at_3 |
|
value: 21.942 |
|
- type: recall_at_5 |
|
value: 26.068 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.481333333333335 |
|
- type: map_at_10 |
|
value: 21.042999999999996 |
|
- type: map_at_100 |
|
value: 22.0115 |
|
- type: map_at_1000 |
|
value: 22.138250000000003 |
|
- type: map_at_3 |
|
value: 19.255166666666664 |
|
- type: map_at_5 |
|
value: 20.23483333333333 |
|
- type: mrr_at_1 |
|
value: 18.692583333333335 |
|
- type: mrr_at_10 |
|
value: 24.281 |
|
- type: mrr_at_100 |
|
value: 25.134249999999998 |
|
- type: mrr_at_1000 |
|
value: 25.218833333333336 |
|
- type: mrr_at_3 |
|
value: 22.54816666666667 |
|
- type: mrr_at_5 |
|
value: 23.507916666666667 |
|
- type: ndcg_at_1 |
|
value: 18.692583333333335 |
|
- type: ndcg_at_10 |
|
value: 24.682166666666667 |
|
- type: ndcg_at_100 |
|
value: 29.43166666666666 |
|
- type: ndcg_at_1000 |
|
value: 32.59633333333334 |
|
- type: ndcg_at_3 |
|
value: 21.481749999999998 |
|
- type: ndcg_at_5 |
|
value: 22.93933333333333 |
|
- type: precision_at_1 |
|
value: 18.692583333333335 |
|
- type: precision_at_10 |
|
value: 4.370916666666667 |
|
- type: precision_at_100 |
|
value: 0.8024999999999999 |
|
- type: precision_at_1000 |
|
value: 0.12566666666666668 |
|
- type: precision_at_3 |
|
value: 9.923833333333334 |
|
- type: precision_at_5 |
|
value: 7.110416666666667 |
|
- type: recall_at_1 |
|
value: 15.481333333333335 |
|
- type: recall_at_10 |
|
value: 32.433166666666665 |
|
- type: recall_at_100 |
|
value: 54.03975 |
|
- type: recall_at_1000 |
|
value: 77.06675 |
|
- type: recall_at_3 |
|
value: 23.353916666666663 |
|
- type: recall_at_5 |
|
value: 27.16183333333334 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackStatsRetrieval |
|
config: default |
|
split: test |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.656999999999998 |
|
- type: map_at_10 |
|
value: 16.59 |
|
- type: map_at_100 |
|
value: 17.372 |
|
- type: map_at_1000 |
|
value: 17.465 |
|
- type: map_at_3 |
|
value: 15.075 |
|
- type: map_at_5 |
|
value: 16.016 |
|
- type: mrr_at_1 |
|
value: 14.877 |
|
- type: mrr_at_10 |
|
value: 18.726000000000003 |
|
- type: mrr_at_100 |
|
value: 19.488 |
|
- type: mrr_at_1000 |
|
value: 19.569 |
|
- type: mrr_at_3 |
|
value: 17.127 |
|
- type: mrr_at_5 |
|
value: 18.108 |
|
- type: ndcg_at_1 |
|
value: 14.877 |
|
- type: ndcg_at_10 |
|
value: 19.326 |
|
- type: ndcg_at_100 |
|
value: 23.426 |
|
- type: ndcg_at_1000 |
|
value: 26.168999999999997 |
|
- type: ndcg_at_3 |
|
value: 16.445 |
|
- type: ndcg_at_5 |
|
value: 18.037 |
|
- type: precision_at_1 |
|
value: 14.877 |
|
- type: precision_at_10 |
|
value: 3.206 |
|
- type: precision_at_100 |
|
value: 0.5740000000000001 |
|
- type: precision_at_1000 |
|
value: 0.08800000000000001 |
|
- type: precision_at_3 |
|
value: 7.26 |
|
- type: precision_at_5 |
|
value: 5.367999999999999 |
|
- type: recall_at_1 |
|
value: 12.656999999999998 |
|
- type: recall_at_10 |
|
value: 25.723000000000003 |
|
- type: recall_at_100 |
|
value: 44.9 |
|
- type: recall_at_1000 |
|
value: 65.923 |
|
- type: recall_at_3 |
|
value: 17.854 |
|
- type: recall_at_5 |
|
value: 21.912000000000003 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackTexRetrieval |
|
config: default |
|
split: test |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.997999999999999 |
|
- type: map_at_10 |
|
value: 11.765 |
|
- type: map_at_100 |
|
value: 12.453 |
|
- type: map_at_1000 |
|
value: 12.575 |
|
- type: map_at_3 |
|
value: 10.721 |
|
- type: map_at_5 |
|
value: 11.269 |
|
- type: mrr_at_1 |
|
value: 9.945 |
|
- type: mrr_at_10 |
|
value: 14.172 |
|
- type: mrr_at_100 |
|
value: 14.862 |
|
- type: mrr_at_1000 |
|
value: 14.965 |
|
- type: mrr_at_3 |
|
value: 13.048000000000002 |
|
- type: mrr_at_5 |
|
value: 13.638 |
|
- type: ndcg_at_1 |
|
value: 9.945 |
|
- type: ndcg_at_10 |
|
value: 14.238000000000001 |
|
- type: ndcg_at_100 |
|
value: 18.052 |
|
- type: ndcg_at_1000 |
|
value: 21.633 |
|
- type: ndcg_at_3 |
|
value: 12.301 |
|
- type: ndcg_at_5 |
|
value: 13.113 |
|
- type: precision_at_1 |
|
value: 9.945 |
|
- type: precision_at_10 |
|
value: 2.636 |
|
- type: precision_at_100 |
|
value: 0.543 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 5.9990000000000006 |
|
- type: precision_at_5 |
|
value: 4.253 |
|
- type: recall_at_1 |
|
value: 7.997999999999999 |
|
- type: recall_at_10 |
|
value: 19.363 |
|
- type: recall_at_100 |
|
value: 37.203 |
|
- type: recall_at_1000 |
|
value: 63.9 |
|
- type: recall_at_3 |
|
value: 13.755999999999998 |
|
- type: recall_at_5 |
|
value: 15.966 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackUnixRetrieval |
|
config: default |
|
split: test |
|
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 |
|
metrics: |
|
- type: map_at_1 |
|
value: 14.132 |
|
- type: map_at_10 |
|
value: 19.032 |
|
- type: map_at_100 |
|
value: 19.942 |
|
- type: map_at_1000 |
|
value: 20.061999999999998 |
|
- type: map_at_3 |
|
value: 17.498 |
|
- type: map_at_5 |
|
value: 18.352 |
|
- type: mrr_at_1 |
|
value: 16.698 |
|
- type: mrr_at_10 |
|
value: 21.898 |
|
- type: mrr_at_100 |
|
value: 22.775000000000002 |
|
- type: mrr_at_1000 |
|
value: 22.869999999999997 |
|
- type: mrr_at_3 |
|
value: 20.196 |
|
- type: mrr_at_5 |
|
value: 21.143 |
|
- type: ndcg_at_1 |
|
value: 16.698 |
|
- type: ndcg_at_10 |
|
value: 22.303 |
|
- type: ndcg_at_100 |
|
value: 26.889000000000003 |
|
- type: ndcg_at_1000 |
|
value: 30.249 |
|
- type: ndcg_at_3 |
|
value: 19.28 |
|
- type: ndcg_at_5 |
|
value: 20.694000000000003 |
|
- type: precision_at_1 |
|
value: 16.698 |
|
- type: precision_at_10 |
|
value: 3.7409999999999997 |
|
- type: precision_at_100 |
|
value: 0.6649999999999999 |
|
- type: precision_at_1000 |
|
value: 0.107 |
|
- type: precision_at_3 |
|
value: 8.706 |
|
- type: precision_at_5 |
|
value: 6.119 |
|
- type: recall_at_1 |
|
value: 14.132 |
|
- type: recall_at_10 |
|
value: 29.572 |
|
- type: recall_at_100 |
|
value: 50.346999999999994 |
|
- type: recall_at_1000 |
|
value: 75.214 |
|
- type: recall_at_3 |
|
value: 21.197 |
|
- type: recall_at_5 |
|
value: 24.887999999999998 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
config: default |
|
split: test |
|
revision: 160c094312a0e1facb97e55eeddb698c0abe3571 |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.474 |
|
- type: map_at_10 |
|
value: 22.362000000000002 |
|
- type: map_at_100 |
|
value: 23.533 |
|
- type: map_at_1000 |
|
value: 23.733999999999998 |
|
- type: map_at_3 |
|
value: 20.529 |
|
- type: map_at_5 |
|
value: 21.543 |
|
- type: mrr_at_1 |
|
value: 20.158 |
|
- type: mrr_at_10 |
|
value: 26.069 |
|
- type: mrr_at_100 |
|
value: 26.962999999999997 |
|
- type: mrr_at_1000 |
|
value: 27.049 |
|
- type: mrr_at_3 |
|
value: 24.44 |
|
- type: mrr_at_5 |
|
value: 25.3 |
|
- type: ndcg_at_1 |
|
value: 20.158 |
|
- type: ndcg_at_10 |
|
value: 26.447 |
|
- type: ndcg_at_100 |
|
value: 31.405 |
|
- type: ndcg_at_1000 |
|
value: 34.969 |
|
- type: ndcg_at_3 |
|
value: 23.639 |
|
- type: ndcg_at_5 |
|
value: 24.852 |
|
- type: precision_at_1 |
|
value: 20.158 |
|
- type: precision_at_10 |
|
value: 5.099 |
|
- type: precision_at_100 |
|
value: 1.113 |
|
- type: precision_at_1000 |
|
value: 0.196 |
|
- type: precision_at_3 |
|
value: 11.397 |
|
- type: precision_at_5 |
|
value: 8.182 |
|
- type: recall_at_1 |
|
value: 16.474 |
|
- type: recall_at_10 |
|
value: 33.812 |
|
- type: recall_at_100 |
|
value: 56.725 |
|
- type: recall_at_1000 |
|
value: 81.151 |
|
- type: recall_at_3 |
|
value: 25.043 |
|
- type: recall_at_5 |
|
value: 28.564 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB CQADupstackWordpressRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 12.027000000000001 |
|
- type: map_at_10 |
|
value: 16.41 |
|
- type: map_at_100 |
|
value: 17.221 |
|
- type: map_at_1000 |
|
value: 17.328 |
|
- type: map_at_3 |
|
value: 15.123000000000001 |
|
- type: map_at_5 |
|
value: 15.795 |
|
- type: mrr_at_1 |
|
value: 13.863 |
|
- type: mrr_at_10 |
|
value: 18.218999999999998 |
|
- type: mrr_at_100 |
|
value: 19.021 |
|
- type: mrr_at_1000 |
|
value: 19.118 |
|
- type: mrr_at_3 |
|
value: 16.882 |
|
- type: mrr_at_5 |
|
value: 17.585 |
|
- type: ndcg_at_1 |
|
value: 13.863 |
|
- type: ndcg_at_10 |
|
value: 19.201999999999998 |
|
- type: ndcg_at_100 |
|
value: 23.669 |
|
- type: ndcg_at_1000 |
|
value: 26.951000000000004 |
|
- type: ndcg_at_3 |
|
value: 16.500999999999998 |
|
- type: ndcg_at_5 |
|
value: 17.686 |
|
- type: precision_at_1 |
|
value: 13.863 |
|
- type: precision_at_10 |
|
value: 3.031 |
|
- type: precision_at_100 |
|
value: 0.567 |
|
- type: precision_at_1000 |
|
value: 0.094 |
|
- type: precision_at_3 |
|
value: 7.086 |
|
- type: precision_at_5 |
|
value: 4.917 |
|
- type: recall_at_1 |
|
value: 12.027000000000001 |
|
- type: recall_at_10 |
|
value: 26.272000000000002 |
|
- type: recall_at_100 |
|
value: 47.818 |
|
- type: recall_at_1000 |
|
value: 73.33 |
|
- type: recall_at_3 |
|
value: 18.743000000000002 |
|
- type: recall_at_5 |
|
value: 21.701 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.357 |
|
- type: map_at_10 |
|
value: 11.350999999999999 |
|
- type: map_at_100 |
|
value: 12.774 |
|
- type: map_at_1000 |
|
value: 12.962000000000002 |
|
- type: map_at_3 |
|
value: 9.142 |
|
- type: map_at_5 |
|
value: 10.219000000000001 |
|
- type: mrr_at_1 |
|
value: 14.593 |
|
- type: mrr_at_10 |
|
value: 23.003 |
|
- type: mrr_at_100 |
|
value: 24.15 |
|
- type: mrr_at_1000 |
|
value: 24.215999999999998 |
|
- type: mrr_at_3 |
|
value: 19.924 |
|
- type: mrr_at_5 |
|
value: 21.628 |
|
- type: ndcg_at_1 |
|
value: 14.593 |
|
- type: ndcg_at_10 |
|
value: 17.06 |
|
- type: ndcg_at_100 |
|
value: 23.674 |
|
- type: ndcg_at_1000 |
|
value: 27.57 |
|
- type: ndcg_at_3 |
|
value: 12.903 |
|
- type: ndcg_at_5 |
|
value: 14.399000000000001 |
|
- type: precision_at_1 |
|
value: 14.593 |
|
- type: precision_at_10 |
|
value: 5.6739999999999995 |
|
- type: precision_at_100 |
|
value: 1.279 |
|
- type: precision_at_1000 |
|
value: 0.198 |
|
- type: precision_at_3 |
|
value: 9.794 |
|
- type: precision_at_5 |
|
value: 7.961 |
|
- type: recall_at_1 |
|
value: 6.357 |
|
- type: recall_at_10 |
|
value: 21.837 |
|
- type: recall_at_100 |
|
value: 45.317 |
|
- type: recall_at_1000 |
|
value: 67.868 |
|
- type: recall_at_3 |
|
value: 11.959999999999999 |
|
- type: recall_at_5 |
|
value: 15.744 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.972 |
|
- type: map_at_10 |
|
value: 9.464 |
|
- type: map_at_100 |
|
value: 13.014999999999999 |
|
- type: map_at_1000 |
|
value: 13.956 |
|
- type: map_at_3 |
|
value: 6.796 |
|
- type: map_at_5 |
|
value: 7.896 |
|
- type: mrr_at_1 |
|
value: 40.0 |
|
- type: mrr_at_10 |
|
value: 49.381 |
|
- type: mrr_at_100 |
|
value: 50.156 |
|
- type: mrr_at_1000 |
|
value: 50.17700000000001 |
|
- type: mrr_at_3 |
|
value: 46.208 |
|
- type: mrr_at_5 |
|
value: 47.958 |
|
- type: ndcg_at_1 |
|
value: 29.5 |
|
- type: ndcg_at_10 |
|
value: 23.438 |
|
- type: ndcg_at_100 |
|
value: 26.128 |
|
- type: ndcg_at_1000 |
|
value: 32.922000000000004 |
|
- type: ndcg_at_3 |
|
value: 26.436999999999998 |
|
- type: ndcg_at_5 |
|
value: 24.63 |
|
- type: precision_at_1 |
|
value: 40.0 |
|
- type: precision_at_10 |
|
value: 20.724999999999998 |
|
- type: precision_at_100 |
|
value: 6.353000000000001 |
|
- type: precision_at_1000 |
|
value: 1.329 |
|
- type: precision_at_3 |
|
value: 31.5 |
|
- type: precision_at_5 |
|
value: 26.400000000000002 |
|
- type: recall_at_1 |
|
value: 3.972 |
|
- type: recall_at_10 |
|
value: 14.173 |
|
- type: recall_at_100 |
|
value: 32.249 |
|
- type: recall_at_1000 |
|
value: 54.991 |
|
- type: recall_at_3 |
|
value: 8.177 |
|
- type: recall_at_5 |
|
value: 10.415000000000001 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 44.775 |
|
- type: f1 |
|
value: 40.9777201408297 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.373000000000001 |
|
- type: map_at_10 |
|
value: 23.247999999999998 |
|
- type: map_at_100 |
|
value: 24.16 |
|
- type: map_at_1000 |
|
value: 24.233 |
|
- type: map_at_3 |
|
value: 20.718 |
|
- type: map_at_5 |
|
value: 22.117 |
|
- type: mrr_at_1 |
|
value: 16.381999999999998 |
|
- type: mrr_at_10 |
|
value: 24.654999999999998 |
|
- type: mrr_at_100 |
|
value: 25.56 |
|
- type: mrr_at_1000 |
|
value: 25.625999999999998 |
|
- type: mrr_at_3 |
|
value: 21.987000000000002 |
|
- type: mrr_at_5 |
|
value: 23.466 |
|
- type: ndcg_at_1 |
|
value: 16.381999999999998 |
|
- type: ndcg_at_10 |
|
value: 28.083000000000002 |
|
- type: ndcg_at_100 |
|
value: 32.939 |
|
- type: ndcg_at_1000 |
|
value: 35.025 |
|
- type: ndcg_at_3 |
|
value: 22.830000000000002 |
|
- type: ndcg_at_5 |
|
value: 25.351000000000003 |
|
- type: precision_at_1 |
|
value: 16.381999999999998 |
|
- type: precision_at_10 |
|
value: 4.5600000000000005 |
|
- type: precision_at_100 |
|
value: 0.722 |
|
- type: precision_at_1000 |
|
value: 0.092 |
|
- type: precision_at_3 |
|
value: 9.921000000000001 |
|
- type: precision_at_5 |
|
value: 7.276000000000001 |
|
- type: recall_at_1 |
|
value: 15.373000000000001 |
|
- type: recall_at_10 |
|
value: 41.942 |
|
- type: recall_at_100 |
|
value: 65.051 |
|
- type: recall_at_1000 |
|
value: 81.208 |
|
- type: recall_at_3 |
|
value: 27.639999999999997 |
|
- type: recall_at_5 |
|
value: 33.708 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.894 |
|
- type: map_at_10 |
|
value: 11.912 |
|
- type: map_at_100 |
|
value: 13.096 |
|
- type: map_at_1000 |
|
value: 13.29 |
|
- type: map_at_3 |
|
value: 9.82 |
|
- type: map_at_5 |
|
value: 10.999 |
|
- type: mrr_at_1 |
|
value: 14.352 |
|
- type: mrr_at_10 |
|
value: 20.811 |
|
- type: mrr_at_100 |
|
value: 21.908 |
|
- type: mrr_at_1000 |
|
value: 22.001 |
|
- type: mrr_at_3 |
|
value: 18.441 |
|
- type: mrr_at_5 |
|
value: 19.961000000000002 |
|
- type: ndcg_at_1 |
|
value: 14.352 |
|
- type: ndcg_at_10 |
|
value: 16.636 |
|
- type: ndcg_at_100 |
|
value: 22.419 |
|
- type: ndcg_at_1000 |
|
value: 26.771 |
|
- type: ndcg_at_3 |
|
value: 13.436 |
|
- type: ndcg_at_5 |
|
value: 14.908 |
|
- type: precision_at_1 |
|
value: 14.352 |
|
- type: precision_at_10 |
|
value: 4.938 |
|
- type: precision_at_100 |
|
value: 1.076 |
|
- type: precision_at_1000 |
|
value: 0.18 |
|
- type: precision_at_3 |
|
value: 9.156 |
|
- type: precision_at_5 |
|
value: 7.407 |
|
- type: recall_at_1 |
|
value: 6.894 |
|
- type: recall_at_10 |
|
value: 21.672 |
|
- type: recall_at_100 |
|
value: 44.193 |
|
- type: recall_at_1000 |
|
value: 71.604 |
|
- type: recall_at_3 |
|
value: 12.498 |
|
- type: recall_at_5 |
|
value: 16.704 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.555 |
|
- type: map_at_10 |
|
value: 25.963 |
|
- type: map_at_100 |
|
value: 26.932000000000002 |
|
- type: map_at_1000 |
|
value: 27.044 |
|
- type: map_at_3 |
|
value: 23.916 |
|
- type: map_at_5 |
|
value: 25.112000000000002 |
|
- type: mrr_at_1 |
|
value: 37.11 |
|
- type: mrr_at_10 |
|
value: 44.175 |
|
- type: mrr_at_100 |
|
value: 44.926 |
|
- type: mrr_at_1000 |
|
value: 44.978 |
|
- type: mrr_at_3 |
|
value: 42.254999999999995 |
|
- type: mrr_at_5 |
|
value: 43.427 |
|
- type: ndcg_at_1 |
|
value: 37.11 |
|
- type: ndcg_at_10 |
|
value: 32.991 |
|
- type: ndcg_at_100 |
|
value: 37.335 |
|
- type: ndcg_at_1000 |
|
value: 40.007 |
|
- type: ndcg_at_3 |
|
value: 29.206 |
|
- type: ndcg_at_5 |
|
value: 31.173000000000002 |
|
- type: precision_at_1 |
|
value: 37.11 |
|
- type: precision_at_10 |
|
value: 7.207 |
|
- type: precision_at_100 |
|
value: 1.065 |
|
- type: precision_at_1000 |
|
value: 0.14200000000000002 |
|
- type: precision_at_3 |
|
value: 18.375 |
|
- type: precision_at_5 |
|
value: 12.581000000000001 |
|
- type: recall_at_1 |
|
value: 18.555 |
|
- type: recall_at_10 |
|
value: 36.036 |
|
- type: recall_at_100 |
|
value: 53.248 |
|
- type: recall_at_1000 |
|
value: 71.128 |
|
- type: recall_at_3 |
|
value: 27.561999999999998 |
|
- type: recall_at_5 |
|
value: 31.452 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 67.5052 |
|
- type: ap |
|
value: 62.39030828629721 |
|
- type: f1 |
|
value: 67.18333662684846 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.042 |
|
- type: map_at_10 |
|
value: 11.837 |
|
- type: map_at_100 |
|
value: 12.756 |
|
- type: map_at_1000 |
|
value: 12.863 |
|
- type: map_at_3 |
|
value: 10.131 |
|
- type: map_at_5 |
|
value: 11.05 |
|
- type: mrr_at_1 |
|
value: 7.2059999999999995 |
|
- type: mrr_at_10 |
|
value: 12.117 |
|
- type: mrr_at_100 |
|
value: 13.038 |
|
- type: mrr_at_1000 |
|
value: 13.141 |
|
- type: mrr_at_3 |
|
value: 10.392 |
|
- type: mrr_at_5 |
|
value: 11.323 |
|
- type: ndcg_at_1 |
|
value: 7.178 |
|
- type: ndcg_at_10 |
|
value: 14.806 |
|
- type: ndcg_at_100 |
|
value: 19.81 |
|
- type: ndcg_at_1000 |
|
value: 23.003999999999998 |
|
- type: ndcg_at_3 |
|
value: 11.236 |
|
- type: ndcg_at_5 |
|
value: 12.901000000000002 |
|
- type: precision_at_1 |
|
value: 7.178 |
|
- type: precision_at_10 |
|
value: 2.506 |
|
- type: precision_at_100 |
|
value: 0.51 |
|
- type: precision_at_1000 |
|
value: 0.079 |
|
- type: precision_at_3 |
|
value: 4.89 |
|
- type: precision_at_5 |
|
value: 3.782 |
|
- type: recall_at_1 |
|
value: 7.042 |
|
- type: recall_at_10 |
|
value: 24.037 |
|
- type: recall_at_100 |
|
value: 48.415 |
|
- type: recall_at_1000 |
|
value: 74.039 |
|
- type: recall_at_3 |
|
value: 14.194999999999999 |
|
- type: recall_at_5 |
|
value: 18.209 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 91.73050615595074 |
|
- type: f1 |
|
value: 91.31113807339747 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 65.65435476516187 |
|
- type: f1 |
|
value: 45.186713172025684 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 65.97175521183591 |
|
- type: f1 |
|
value: 63.30094106953352 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 72.81775386684599 |
|
- type: f1 |
|
value: 71.5535406261331 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 28.530997915529994 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 25.711540056372872 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: None |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 30.199045062705064 |
|
- type: mrr |
|
value: 31.1642426854302 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.9730000000000003 |
|
- type: map_at_10 |
|
value: 8.282 |
|
- type: map_at_100 |
|
value: 10.331 |
|
- type: map_at_1000 |
|
value: 11.613 |
|
- type: map_at_3 |
|
value: 6.106 |
|
- type: map_at_5 |
|
value: 7.258000000000001 |
|
- type: mrr_at_1 |
|
value: 35.604 |
|
- type: mrr_at_10 |
|
value: 44.241 |
|
- type: mrr_at_100 |
|
value: 45.023 |
|
- type: mrr_at_1000 |
|
value: 45.079 |
|
- type: mrr_at_3 |
|
value: 42.002 |
|
- type: mrr_at_5 |
|
value: 43.751 |
|
- type: ndcg_at_1 |
|
value: 32.663 |
|
- type: ndcg_at_10 |
|
value: 25.419999999999998 |
|
- type: ndcg_at_100 |
|
value: 23.454 |
|
- type: ndcg_at_1000 |
|
value: 32.726 |
|
- type: ndcg_at_3 |
|
value: 28.892 |
|
- type: ndcg_at_5 |
|
value: 27.982000000000003 |
|
- type: precision_at_1 |
|
value: 35.604 |
|
- type: precision_at_10 |
|
value: 18.7 |
|
- type: precision_at_100 |
|
value: 6.353000000000001 |
|
- type: precision_at_1000 |
|
value: 1.9429999999999998 |
|
- type: precision_at_3 |
|
value: 27.554000000000002 |
|
- type: precision_at_5 |
|
value: 24.396 |
|
- type: recall_at_1 |
|
value: 3.9730000000000003 |
|
- type: recall_at_10 |
|
value: 12.606 |
|
- type: recall_at_100 |
|
value: 24.915000000000003 |
|
- type: recall_at_1000 |
|
value: 57.75900000000001 |
|
- type: recall_at_3 |
|
value: 7.207 |
|
- type: recall_at_5 |
|
value: 10.017 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 9.543 |
|
- type: map_at_10 |
|
value: 16.445999999999998 |
|
- type: map_at_100 |
|
value: 17.682000000000002 |
|
- type: map_at_1000 |
|
value: 17.78 |
|
- type: map_at_3 |
|
value: 13.895 |
|
- type: map_at_5 |
|
value: 15.282000000000002 |
|
- type: mrr_at_1 |
|
value: 10.863 |
|
- type: mrr_at_10 |
|
value: 18.137 |
|
- type: mrr_at_100 |
|
value: 19.291 |
|
- type: mrr_at_1000 |
|
value: 19.371 |
|
- type: mrr_at_3 |
|
value: 15.556000000000001 |
|
- type: mrr_at_5 |
|
value: 16.98 |
|
- type: ndcg_at_1 |
|
value: 10.834000000000001 |
|
- type: ndcg_at_10 |
|
value: 20.96 |
|
- type: ndcg_at_100 |
|
value: 27.336 |
|
- type: ndcg_at_1000 |
|
value: 30.001 |
|
- type: ndcg_at_3 |
|
value: 15.719 |
|
- type: ndcg_at_5 |
|
value: 18.212999999999997 |
|
- type: precision_at_1 |
|
value: 10.834000000000001 |
|
- type: precision_at_10 |
|
value: 3.911 |
|
- type: precision_at_100 |
|
value: 0.756 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 7.455 |
|
- type: precision_at_5 |
|
value: 5.846 |
|
- type: recall_at_1 |
|
value: 9.543 |
|
- type: recall_at_10 |
|
value: 33.35 |
|
- type: recall_at_100 |
|
value: 63.141999999999996 |
|
- type: recall_at_1000 |
|
value: 83.57 |
|
- type: recall_at_3 |
|
value: 19.38 |
|
- type: recall_at_5 |
|
value: 25.266 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 63.660000000000004 |
|
- type: map_at_10 |
|
value: 76.48 |
|
- type: map_at_100 |
|
value: 77.24 |
|
- type: map_at_1000 |
|
value: 77.275 |
|
- type: map_at_3 |
|
value: 73.52199999999999 |
|
- type: map_at_5 |
|
value: 75.323 |
|
- type: mrr_at_1 |
|
value: 73.3 |
|
- type: mrr_at_10 |
|
value: 80.741 |
|
- type: mrr_at_100 |
|
value: 80.975 |
|
- type: mrr_at_1000 |
|
value: 80.979 |
|
- type: mrr_at_3 |
|
value: 79.282 |
|
- type: mrr_at_5 |
|
value: 80.24900000000001 |
|
- type: ndcg_at_1 |
|
value: 73.32 |
|
- type: ndcg_at_10 |
|
value: 81.172 |
|
- type: ndcg_at_100 |
|
value: 83.22800000000001 |
|
- type: ndcg_at_1000 |
|
value: 83.576 |
|
- type: ndcg_at_3 |
|
value: 77.586 |
|
- type: ndcg_at_5 |
|
value: 79.46600000000001 |
|
- type: precision_at_1 |
|
value: 73.32 |
|
- type: precision_at_10 |
|
value: 12.246 |
|
- type: precision_at_100 |
|
value: 1.459 |
|
- type: precision_at_1000 |
|
value: 0.155 |
|
- type: precision_at_3 |
|
value: 33.607 |
|
- type: precision_at_5 |
|
value: 22.214 |
|
- type: recall_at_1 |
|
value: 63.660000000000004 |
|
- type: recall_at_10 |
|
value: 90.147 |
|
- type: recall_at_100 |
|
value: 97.882 |
|
- type: recall_at_1000 |
|
value: 99.705 |
|
- type: recall_at_3 |
|
value: 79.948 |
|
- type: recall_at_5 |
|
value: 85.15 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 37.24530383149719 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 47.10522668186171 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.003 |
|
- type: map_at_10 |
|
value: 7.0169999999999995 |
|
- type: map_at_100 |
|
value: 8.436 |
|
- type: map_at_1000 |
|
value: 8.693 |
|
- type: map_at_3 |
|
value: 5.143 |
|
- type: map_at_5 |
|
value: 6.165 |
|
- type: mrr_at_1 |
|
value: 14.7 |
|
- type: mrr_at_10 |
|
value: 22.664 |
|
- type: mrr_at_100 |
|
value: 23.880000000000003 |
|
- type: mrr_at_1000 |
|
value: 23.964 |
|
- type: mrr_at_3 |
|
value: 19.650000000000002 |
|
- type: mrr_at_5 |
|
value: 21.295 |
|
- type: ndcg_at_1 |
|
value: 14.7 |
|
- type: ndcg_at_10 |
|
value: 12.509999999999998 |
|
- type: ndcg_at_100 |
|
value: 18.848000000000003 |
|
- type: ndcg_at_1000 |
|
value: 23.97 |
|
- type: ndcg_at_3 |
|
value: 11.673 |
|
- type: ndcg_at_5 |
|
value: 10.397 |
|
- type: precision_at_1 |
|
value: 14.7 |
|
- type: precision_at_10 |
|
value: 6.49 |
|
- type: precision_at_100 |
|
value: 1.562 |
|
- type: precision_at_1000 |
|
value: 0.27899999999999997 |
|
- type: precision_at_3 |
|
value: 10.767 |
|
- type: precision_at_5 |
|
value: 9.139999999999999 |
|
- type: recall_at_1 |
|
value: 3.003 |
|
- type: recall_at_10 |
|
value: 13.161999999999999 |
|
- type: recall_at_100 |
|
value: 31.747999999999998 |
|
- type: recall_at_1000 |
|
value: 56.752 |
|
- type: recall_at_3 |
|
value: 6.563 |
|
- type: recall_at_5 |
|
value: 9.263 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.5160077089625 |
|
- type: cos_sim_spearman |
|
value: 67.28825297023138 |
|
- type: euclidean_pearson |
|
value: 72.39938443269206 |
|
- type: euclidean_spearman |
|
value: 67.28835245540397 |
|
- type: manhattan_pearson |
|
value: 69.46413862678756 |
|
- type: manhattan_spearman |
|
value: 65.04853993701172 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.89271048242642 |
|
- type: cos_sim_spearman |
|
value: 66.18310956468201 |
|
- type: euclidean_pearson |
|
value: 68.35445603238207 |
|
- type: euclidean_spearman |
|
value: 66.18456540329906 |
|
- type: manhattan_pearson |
|
value: 67.8411114817822 |
|
- type: manhattan_spearman |
|
value: 66.416716585612 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.2216356861313 |
|
- type: cos_sim_spearman |
|
value: 79.37038668590753 |
|
- type: euclidean_pearson |
|
value: 79.01512518225226 |
|
- type: euclidean_spearman |
|
value: 79.37042448746669 |
|
- type: manhattan_pearson |
|
value: 78.96268955680836 |
|
- type: manhattan_spearman |
|
value: 79.54073298193023 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.3544215128133 |
|
- type: cos_sim_spearman |
|
value: 75.07229525913817 |
|
- type: euclidean_pearson |
|
value: 77.35598390483041 |
|
- type: euclidean_spearman |
|
value: 75.07228556747974 |
|
- type: manhattan_pearson |
|
value: 76.27348311336605 |
|
- type: manhattan_spearman |
|
value: 74.50258040498937 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.86410111924121 |
|
- type: cos_sim_spearman |
|
value: 81.79657437718866 |
|
- type: euclidean_pearson |
|
value: 81.77144036632458 |
|
- type: euclidean_spearman |
|
value: 81.79657286849607 |
|
- type: manhattan_pearson |
|
value: 81.87491956950679 |
|
- type: manhattan_spearman |
|
value: 82.16993847726854 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.43507688364112 |
|
- type: cos_sim_spearman |
|
value: 77.63882301316933 |
|
- type: euclidean_pearson |
|
value: 77.25501398026381 |
|
- type: euclidean_spearman |
|
value: 77.63965196736244 |
|
- type: manhattan_pearson |
|
value: 77.67118978923139 |
|
- type: manhattan_spearman |
|
value: 78.01084214592416 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.39964672680482 |
|
- type: cos_sim_spearman |
|
value: 85.4075592513342 |
|
- type: euclidean_pearson |
|
value: 85.111606756296 |
|
- type: euclidean_spearman |
|
value: 85.40843260765956 |
|
- type: manhattan_pearson |
|
value: 84.8842901249278 |
|
- type: manhattan_spearman |
|
value: 85.63868618596224 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 62.75456403534724 |
|
- type: cos_sim_spearman |
|
value: 60.22663871632273 |
|
- type: euclidean_pearson |
|
value: 62.65086137572171 |
|
- type: euclidean_spearman |
|
value: 60.22663871632273 |
|
- type: manhattan_pearson |
|
value: 62.250953520717104 |
|
- type: manhattan_spearman |
|
value: 60.3533574497436 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: None |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.7231724327084 |
|
- type: cos_sim_spearman |
|
value: 76.94587277885458 |
|
- type: euclidean_pearson |
|
value: 78.13987744447253 |
|
- type: euclidean_spearman |
|
value: 76.94589124562322 |
|
- type: manhattan_pearson |
|
value: 77.01673792666305 |
|
- type: manhattan_spearman |
|
value: 75.80700280973542 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: None |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 72.367197197921 |
|
- type: mrr |
|
value: 91.09422258932064 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 37.583 |
|
- type: map_at_10 |
|
value: 45.412 |
|
- type: map_at_100 |
|
value: 46.504 |
|
- type: map_at_1000 |
|
value: 46.558 |
|
- type: map_at_3 |
|
value: 42.552 |
|
- type: map_at_5 |
|
value: 44.635000000000005 |
|
- type: mrr_at_1 |
|
value: 40.0 |
|
- type: mrr_at_10 |
|
value: 47.33 |
|
- type: mrr_at_100 |
|
value: 48.285 |
|
- type: mrr_at_1000 |
|
value: 48.329 |
|
- type: mrr_at_3 |
|
value: 44.944 |
|
- type: mrr_at_5 |
|
value: 46.711000000000006 |
|
- type: ndcg_at_1 |
|
value: 40.0 |
|
- type: ndcg_at_10 |
|
value: 49.818 |
|
- type: ndcg_at_100 |
|
value: 55.226 |
|
- type: ndcg_at_1000 |
|
value: 56.599999999999994 |
|
- type: ndcg_at_3 |
|
value: 44.659 |
|
- type: ndcg_at_5 |
|
value: 48.107 |
|
- type: precision_at_1 |
|
value: 40.0 |
|
- type: precision_at_10 |
|
value: 6.833 |
|
- type: precision_at_100 |
|
value: 0.98 |
|
- type: precision_at_1000 |
|
value: 0.11 |
|
- type: precision_at_3 |
|
value: 17.444000000000003 |
|
- type: precision_at_5 |
|
value: 12.333 |
|
- type: recall_at_1 |
|
value: 37.583 |
|
- type: recall_at_10 |
|
value: 61.622 |
|
- type: recall_at_100 |
|
value: 87.1 |
|
- type: recall_at_1000 |
|
value: 97.8 |
|
- type: recall_at_3 |
|
value: 47.983 |
|
- type: recall_at_5 |
|
value: 56.65 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: None |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.70990099009902 |
|
- type: cos_sim_ap |
|
value: 91.32913696282823 |
|
- type: cos_sim_f1 |
|
value: 85.01006036217304 |
|
- type: cos_sim_precision |
|
value: 85.52631578947368 |
|
- type: cos_sim_recall |
|
value: 84.5 |
|
- type: dot_accuracy |
|
value: 99.70990099009902 |
|
- type: dot_ap |
|
value: 91.32913696282823 |
|
- type: dot_f1 |
|
value: 85.01006036217304 |
|
- type: dot_precision |
|
value: 85.52631578947368 |
|
- type: dot_recall |
|
value: 84.5 |
|
- type: euclidean_accuracy |
|
value: 99.70990099009902 |
|
- type: euclidean_ap |
|
value: 91.32913696282823 |
|
- type: euclidean_f1 |
|
value: 85.01006036217304 |
|
- type: euclidean_precision |
|
value: 85.52631578947368 |
|
- type: euclidean_recall |
|
value: 84.5 |
|
- type: manhattan_accuracy |
|
value: 99.76138613861386 |
|
- type: manhattan_ap |
|
value: 93.79556639749748 |
|
- type: manhattan_f1 |
|
value: 87.80246913580247 |
|
- type: manhattan_precision |
|
value: 86.73170731707317 |
|
- type: manhattan_recall |
|
value: 88.9 |
|
- type: max_accuracy |
|
value: 99.76138613861386 |
|
- type: max_ap |
|
value: 93.79556639749748 |
|
- type: max_f1 |
|
value: 87.80246913580247 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 43.31369355223715 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 29.601772320922777 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: None |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 45.58773371195953 |
|
- type: mrr |
|
value: 46.30187112723877 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: None |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.0154193888818 |
|
- type: cos_sim_spearman |
|
value: 30.147164982667924 |
|
- type: dot_pearson |
|
value: 30.015419367262712 |
|
- type: dot_spearman |
|
value: 30.1547894792066 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.125 |
|
- type: map_at_10 |
|
value: 0.683 |
|
- type: map_at_100 |
|
value: 3.88 |
|
- type: map_at_1000 |
|
value: 10.776 |
|
- type: map_at_3 |
|
value: 0.28200000000000003 |
|
- type: map_at_5 |
|
value: 0.416 |
|
- type: mrr_at_1 |
|
value: 56.00000000000001 |
|
- type: mrr_at_10 |
|
value: 67.144 |
|
- type: mrr_at_100 |
|
value: 67.674 |
|
- type: mrr_at_1000 |
|
value: 67.674 |
|
- type: mrr_at_3 |
|
value: 63.333 |
|
- type: mrr_at_5 |
|
value: 66.033 |
|
- type: ndcg_at_1 |
|
value: 48.0 |
|
- type: ndcg_at_10 |
|
value: 40.453 |
|
- type: ndcg_at_100 |
|
value: 32.356 |
|
- type: ndcg_at_1000 |
|
value: 30.54 |
|
- type: ndcg_at_3 |
|
value: 45.531 |
|
- type: ndcg_at_5 |
|
value: 43.791999999999994 |
|
- type: precision_at_1 |
|
value: 54.0 |
|
- type: precision_at_10 |
|
value: 43.2 |
|
- type: precision_at_100 |
|
value: 34.12 |
|
- type: precision_at_1000 |
|
value: 15.192 |
|
- type: precision_at_3 |
|
value: 48.667 |
|
- type: precision_at_5 |
|
value: 47.199999999999996 |
|
- type: recall_at_1 |
|
value: 0.125 |
|
- type: recall_at_10 |
|
value: 0.9490000000000001 |
|
- type: recall_at_100 |
|
value: 7.066 |
|
- type: recall_at_1000 |
|
value: 29.948000000000004 |
|
- type: recall_at_3 |
|
value: 0.313 |
|
- type: recall_at_5 |
|
value: 0.526 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: None |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.494 |
|
- type: map_at_10 |
|
value: 8.271 |
|
- type: map_at_100 |
|
value: 13.59 |
|
- type: map_at_1000 |
|
value: 15.18 |
|
- type: map_at_3 |
|
value: 4.232 |
|
- type: map_at_5 |
|
value: 5.656 |
|
- type: mrr_at_1 |
|
value: 26.531 |
|
- type: mrr_at_10 |
|
value: 42.504999999999995 |
|
- type: mrr_at_100 |
|
value: 43.318 |
|
- type: mrr_at_1000 |
|
value: 43.318 |
|
- type: mrr_at_3 |
|
value: 39.456 |
|
- type: mrr_at_5 |
|
value: 39.966 |
|
- type: ndcg_at_1 |
|
value: 24.490000000000002 |
|
- type: ndcg_at_10 |
|
value: 22.358 |
|
- type: ndcg_at_100 |
|
value: 33.625 |
|
- type: ndcg_at_1000 |
|
value: 45.211 |
|
- type: ndcg_at_3 |
|
value: 26.345000000000002 |
|
- type: ndcg_at_5 |
|
value: 22.743 |
|
- type: precision_at_1 |
|
value: 26.531 |
|
- type: precision_at_10 |
|
value: 20.612 |
|
- type: precision_at_100 |
|
value: 7.5920000000000005 |
|
- type: precision_at_1000 |
|
value: 1.494 |
|
- type: precision_at_3 |
|
value: 28.571 |
|
- type: precision_at_5 |
|
value: 22.857 |
|
- type: recall_at_1 |
|
value: 1.494 |
|
- type: recall_at_10 |
|
value: 14.657 |
|
- type: recall_at_100 |
|
value: 45.273 |
|
- type: recall_at_1000 |
|
value: 80.66 |
|
- type: recall_at_3 |
|
value: 5.904 |
|
- type: recall_at_5 |
|
value: 8.053 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 68.7092 |
|
- type: ap |
|
value: 13.166630913914243 |
|
- type: f1 |
|
value: 52.79567185490722 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: None |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 54.9660441426146 |
|
- type: f1 |
|
value: 55.17567905972333 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: None |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 37.58792693202503 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: None |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 83.88269654884664 |
|
- type: cos_sim_ap |
|
value: 66.09276985843528 |
|
- type: cos_sim_f1 |
|
value: 63.225649744959924 |
|
- type: cos_sim_precision |
|
value: 58.573357335733576 |
|
- type: cos_sim_recall |
|
value: 68.68073878627968 |
|
- type: dot_accuracy |
|
value: 83.88269654884664 |
|
- type: dot_ap |
|
value: 66.09276747019544 |
|
- type: dot_f1 |
|
value: 63.225649744959924 |
|
- type: dot_precision |
|
value: 58.573357335733576 |
|
- type: dot_recall |
|
value: 68.68073878627968 |
|
- type: euclidean_accuracy |
|
value: 83.88269654884664 |
|
- type: euclidean_ap |
|
value: 66.09276985843528 |
|
- type: euclidean_f1 |
|
value: 63.225649744959924 |
|
- type: euclidean_precision |
|
value: 58.573357335733576 |
|
- type: euclidean_recall |
|
value: 68.68073878627968 |
|
- type: manhattan_accuracy |
|
value: 82.69058830541813 |
|
- type: manhattan_ap |
|
value: 62.74574997540533 |
|
- type: manhattan_f1 |
|
value: 59.96326905417815 |
|
- type: manhattan_precision |
|
value: 53.06785859406745 |
|
- type: manhattan_recall |
|
value: 68.91820580474935 |
|
- type: max_accuracy |
|
value: 83.88269654884664 |
|
- type: max_ap |
|
value: 66.09276985843528 |
|
- type: max_f1 |
|
value: 63.225649744959924 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: None |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.57519307641557 |
|
- type: cos_sim_ap |
|
value: 83.25474211186804 |
|
- type: cos_sim_f1 |
|
value: 75.56529680365297 |
|
- type: cos_sim_precision |
|
value: 71.89129074859248 |
|
- type: cos_sim_recall |
|
value: 79.63504773637203 |
|
- type: dot_accuracy |
|
value: 87.57519307641557 |
|
- type: dot_ap |
|
value: 83.25474240805171 |
|
- type: dot_f1 |
|
value: 75.56529680365297 |
|
- type: dot_precision |
|
value: 71.89129074859248 |
|
- type: dot_recall |
|
value: 79.63504773637203 |
|
- type: euclidean_accuracy |
|
value: 87.57519307641557 |
|
- type: euclidean_ap |
|
value: 83.25474211186805 |
|
- type: euclidean_f1 |
|
value: 75.56529680365297 |
|
- type: euclidean_precision |
|
value: 71.89129074859248 |
|
- type: euclidean_recall |
|
value: 79.63504773637203 |
|
- type: manhattan_accuracy |
|
value: 87.60041914076145 |
|
- type: manhattan_ap |
|
value: 83.11911507311108 |
|
- type: manhattan_f1 |
|
value: 75.27478546649627 |
|
- type: manhattan_precision |
|
value: 71.59130374383552 |
|
- type: manhattan_recall |
|
value: 79.35786880197105 |
|
- type: max_accuracy |
|
value: 87.60041914076145 |
|
- type: max_ap |
|
value: 83.25474240805171 |
|
- type: max_f1 |
|
value: 75.56529680365297 |
|
--- |