{Setfit_youtube_comments}

This is a Setfit model: It maps sentences to a n dimensional dense vector space and can be used for classification of text into question or not_question class.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers and setfit installed:

pip install -U sentence-transformers
pip install setfit

Then you can use the model like this:

from setfit import SetFitModel
model = SetFitModel.from_pretrained("tushifire/setfit_youtube_comments_is_a_question")

# Run inference
preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
print(preds)

preds = model(["""what video do I watch that takes the html_output and insert it into the actual html page?""",
               "Why does for loop end without a break statement"])
print(preds)

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 80 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss

Parameters of the fit()-Method:

{
    "epochs": 10,
    "evaluation_steps": 0,
    "evaluator": "NoneType",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": 800,
    "warmup_steps": 80,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Normalize()
)

Citing & Authors

Downloads last month
12
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support text-classification models for sentence-transformers library.