|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: nguyenvulebinh/wav2vec2-base-vi |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-base-vietnamese-VIVOS-CommonVoice-FOSD-Control-dataset-25e-epochs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-vietnamese-VIVOS-CommonVoice-FOSD-Control-dataset-25e-epochs |
|
|
|
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vi](https://huggingface.co./nguyenvulebinh/wav2vec2-base-vi) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3338 |
|
- Wer: 0.1833 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:| |
|
| 16.1039 | 0.39 | 500 | 21.1164 | 1.0 | |
|
| 10.5383 | 0.77 | 1000 | 15.8037 | 1.0 | |
|
| 7.5435 | 1.16 | 1500 | 9.8785 | 1.0 | |
|
| 5.1426 | 1.55 | 2000 | 5.9691 | 1.0 | |
|
| 3.9112 | 1.93 | 2500 | 4.1400 | 1.0 | |
|
| 3.5159 | 2.32 | 3000 | 3.6877 | 1.0 | |
|
| 3.4056 | 2.71 | 3500 | 3.5166 | 1.0 | |
|
| 3.384 | 3.09 | 4000 | 3.6170 | 1.0 | |
|
| 3.3715 | 3.48 | 4500 | 3.5045 | 1.0 | |
|
| 3.373 | 3.87 | 5000 | 3.4859 | 1.0 | |
|
| 3.3539 | 4.25 | 5500 | 3.4843 | 1.0 | |
|
| 3.3063 | 4.64 | 6000 | 3.3596 | 1.0 | |
|
| 3.0749 | 5.03 | 6500 | 2.8515 | 0.9994 | |
|
| 2.6888 | 5.41 | 7000 | 2.4817 | 1.0000 | |
|
| 2.3404 | 5.8 | 7500 | 2.0490 | 0.9815 | |
|
| 2.0588 | 6.19 | 8000 | 1.7986 | 0.9288 | |
|
| 1.8428 | 6.57 | 8500 | 1.4945 | 0.8332 | |
|
| 1.686 | 6.96 | 9000 | 1.3796 | 0.7640 | |
|
| 1.5399 | 7.35 | 9500 | 1.2362 | 0.6927 | |
|
| 1.4374 | 7.73 | 10000 | 1.1130 | 0.6320 | |
|
| 1.3281 | 8.12 | 10500 | 1.0058 | 0.5705 | |
|
| 1.2308 | 8.51 | 11000 | 0.8888 | 0.5109 | |
|
| 1.1405 | 8.89 | 11500 | 0.8438 | 0.4524 | |
|
| 1.0647 | 9.28 | 12000 | 0.7767 | 0.4208 | |
|
| 1.0104 | 9.67 | 12500 | 0.7385 | 0.3777 | |
|
| 0.9629 | 10.05 | 13000 | 0.6731 | 0.3505 | |
|
| 0.9045 | 10.44 | 13500 | 0.6295 | 0.3317 | |
|
| 0.8573 | 10.83 | 14000 | 0.6071 | 0.3115 | |
|
| 0.8443 | 11.21 | 14500 | 0.5895 | 0.2984 | |
|
| 0.7915 | 11.6 | 15000 | 0.5828 | 0.2823 | |
|
| 0.7965 | 11.99 | 15500 | 0.5552 | 0.2714 | |
|
| 0.7738 | 12.37 | 16000 | 0.5100 | 0.2605 | |
|
| 0.7326 | 12.76 | 16500 | 0.4884 | 0.2499 | |
|
| 0.7007 | 13.15 | 17000 | 0.4799 | 0.2402 | |
|
| 0.6997 | 13.53 | 17500 | 0.4647 | 0.2331 | |
|
| 0.68 | 13.92 | 18000 | 0.4469 | 0.2271 | |
|
| 0.6707 | 14.31 | 18500 | 0.4261 | 0.2231 | |
|
| 0.6557 | 14.69 | 19000 | 0.4145 | 0.2164 | |
|
| 0.6509 | 15.08 | 19500 | 0.4010 | 0.2120 | |
|
| 0.6649 | 15.47 | 20000 | 0.4038 | 0.2092 | |
|
| 0.6191 | 15.85 | 20500 | 0.3926 | 0.2064 | |
|
| 0.6385 | 16.24 | 21000 | 0.3882 | 0.2024 | |
|
| 0.6222 | 16.63 | 21500 | 0.3874 | 0.2016 | |
|
| 0.5792 | 17.01 | 22000 | 0.3873 | 0.2023 | |
|
| 0.5775 | 17.4 | 22500 | 0.3757 | 0.1975 | |
|
| 0.5647 | 17.79 | 23000 | 0.3626 | 0.1964 | |
|
| 0.5723 | 18.17 | 23500 | 0.3574 | 0.1958 | |
|
| 0.5573 | 18.56 | 24000 | 0.3530 | 0.1960 | |
|
| 0.5813 | 18.95 | 24500 | 0.3541 | 0.1933 | |
|
| 0.563 | 19.33 | 25000 | 0.3455 | 0.1926 | |
|
| 0.5402 | 19.72 | 25500 | 0.3483 | 0.1910 | |
|
| 0.5578 | 20.11 | 26000 | 0.3516 | 0.1915 | |
|
| 0.5456 | 20.49 | 26500 | 0.3477 | 0.1878 | |
|
| 0.5453 | 20.88 | 27000 | 0.3391 | 0.1882 | |
|
| 0.5265 | 21.27 | 27500 | 0.3386 | 0.1869 | |
|
| 0.557 | 21.66 | 28000 | 0.3388 | 0.1864 | |
|
| 0.5526 | 22.04 | 28500 | 0.3373 | 0.1864 | |
|
| 0.5284 | 22.43 | 29000 | 0.3352 | 0.1854 | |
|
| 0.5351 | 22.82 | 29500 | 0.3373 | 0.1850 | |
|
| 0.5775 | 23.2 | 30000 | 0.3382 | 0.1848 | |
|
| 0.5292 | 23.59 | 30500 | 0.3371 | 0.1843 | |
|
| 0.52 | 23.98 | 31000 | 0.3338 | 0.1839 | |
|
| 0.5372 | 24.36 | 31500 | 0.3337 | 0.1829 | |
|
| 0.5167 | 24.75 | 32000 | 0.3338 | 0.1833 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|