See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Yarn-Llama-2-7b-128k
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 62850aee15c39860_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/62850aee15c39860_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: tryingpro/1eb5439f-8cd3-4f7a-94b9-abcd11123a56
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 90
micro_batch_size: 2
mlflow_experiment_name: /tmp/62850aee15c39860_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: tryingpro-unicourt
wandb_mode: online
wandb_name: d6d48812-926a-4af7-a9a9-fcf438e7f6df
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d6d48812-926a-4af7-a9a9-fcf438e7f6df
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
1eb5439f-8cd3-4f7a-94b9-abcd11123a56
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7598
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 90
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0020 | 1 | 1.3284 |
43.3345 | 0.0162 | 8 | 1.1918 |
35.4878 | 0.0325 | 16 | 0.9614 |
29.5876 | 0.0487 | 24 | 0.8608 |
25.3693 | 0.0649 | 32 | 0.8221 |
27.2901 | 0.0811 | 40 | 0.8000 |
25.6231 | 0.0974 | 48 | 0.7859 |
24.7209 | 0.1136 | 56 | 0.7749 |
22.6814 | 0.1298 | 64 | 0.7678 |
22.8434 | 0.1460 | 72 | 0.7634 |
27.5242 | 0.1623 | 80 | 0.7606 |
24.803 | 0.1785 | 88 | 0.7598 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for tryingpro/1eb5439f-8cd3-4f7a-94b9-abcd11123a56
Base model
NousResearch/Yarn-Llama-2-7b-128k