Llama-3.2-3B-Danoia
Der er ikke meget at sige andet end at den kan dansk.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 222
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0895 | 0.2103 | 500 | 1.0488 |
1.0893 | 0.4205 | 1000 | 0.9952 |
0.864 | 0.6308 | 1500 | 0.9645 |
0.9665 | 0.8411 | 2000 | 0.9406 |
0.9387 | 1.0514 | 2500 | 0.9242 |
0.7996 | 1.2617 | 3000 | 0.9126 |
0.7904 | 1.4720 | 3500 | 0.9005 |
0.9745 | 1.6822 | 4000 | 0.8926 |
1.0152 | 1.8925 | 4500 | 0.8859 |
0.7676 | 2.1028 | 5000 | 0.8821 |
0.8127 | 2.3131 | 5500 | 0.8791 |
0.9498 | 2.5234 | 6000 | 0.8770 |
0.795 | 2.7336 | 6500 | 0.8758 |
0.8029 | 2.9439 | 7000 | 0.8758 |
Framework versions
- PEFT 0.11.1
- Transformers 4.46.1
- Pytorch 2.5.1
- Datasets 2.20.0
- Tokenizers 0.20.3
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for trollek/Llama-3.2-3B-Danoia
Base model
meta-llama/Llama-3.2-3B-Instruct