metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: twitter_emotions
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9375
twitter_emotions
This model is a fine-tuned version of sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1647
- Accuracy: 0.9375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2486 | 1.0 | 2000 | 0.2115 | 0.931 |
0.135 | 2.0 | 4000 | 0.1725 | 0.936 |
0.1041 | 3.0 | 6000 | 0.1647 | 0.9375 |
Framework versions
- Transformers 4.12.5
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3