Uploaded model

  • Developed by: tomofusa
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.


How to use

There are the normal steps from sample codes.

  1. ready to (you can skip this step in Google Colaboratry. )
# conda環境の構築
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"  

# このコマンドではいくつか質問があるので答えて下さい。おそらくインストール先のデフォルトは/root/miniforge3かと思います  
bash Miniforge3-$(uname)-$(uname -m).sh  

# 以下、インストール先が/root/miniforge3であることを前提とします  
export PATH=/root/miniforge3/bin:$PATH  
conda init  

# ここで一度、terminalを立ち上げ直す必要があります。  
# 以下のリンク先に従い環境を作ります。  
# https://docs.unsloth.ai/get-started/installation/conda-install  
conda create --name unsloth_env python=3.10 pytorch-cuda=12.1 pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers -y  
conda activate unsloth_env  
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"  
pip install --no-deps "trl<0.9.0" peft accelerate bitsandbytes  

# jupyter notebook用のセットアップ。  
conda install -c conda-forge ipykernel  
python -m ipykernel install --user --name=unsloth_env --display-name "Python (unsloth_env)"  

Follow these steps, run in the notebook:

  1. load model
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel
import torch
import json

model_name = "tomofusa/llm-jp-3-13b-finetune-2"

max_seq_length = 2048
dtype = None
load_in_4bit = True

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = model_name,
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    # token = "hf-token", # In the Google Colab case, it call from ENV. If you want to write the token directly, please comment it out.
)
FastLanguageModel.for_inference(model)
  1. Set up datasets and run inference.
  • Upload elyza-tasks-100-TV_0.jsonl to your workspace in manual.
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""
from tqdm import tqdm

# inference
results = []
for dt in tqdm(datasets):
  input = dt["input"]

  prompt = f"""### 指示\n{input}\n### 回答\n"""

  inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

  outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
  prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

  results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
  1. Save results to jsonl.
file_name = model_name.replace("/", "_") + "_output.jsonl"
with open(f"./{file_name}", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tomofusa/llm-jp-3-13b-finetune-2

Finetuned
(1137)
this model