Edit model card

SentenceTransformer based on FacebookAI/xlm-roberta-base

This is a sentence-transformers model finetuned from FacebookAI/xlm-roberta-base on the en-ar, en-fr, en-de, en-es, en-tr and en-it datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: FacebookAI/xlm-roberta-base
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Training Datasets:
  • Languages: en, multilingual, ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it")
# Run inference
sentences = [
    'Wir sind eins.',
    'Das versuchen wir zu bieten.',
    'Ihre Gehirne sind ungefähr 100 Millionen Mal komplizierter.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Knowledge Distillation

Metric Value
negative_mse -20.3955

Translation

Metric Value
src2trg_accuracy 0.7603
trg2src_accuracy 0.7825
mean_accuracy 0.7714

Semantic Similarity

Metric Value
pearson_cosine 0.4098
spearman_cosine 0.4425
pearson_manhattan 0.4069
spearman_manhattan 0.4194
pearson_euclidean 0.3801
spearman_euclidean 0.3865
pearson_dot 0.4078
spearman_dot 0.3768
pearson_max 0.4098
spearman_max 0.4425

Knowledge Distillation

Metric Value
negative_mse -19.6232

Translation

Metric Value
src2trg_accuracy 0.8982
trg2src_accuracy 0.8901
mean_accuracy 0.8942

Semantic Similarity

Metric Value
pearson_cosine 0.5018
spearman_cosine 0.5334
pearson_manhattan 0.4461
spearman_manhattan 0.4547
pearson_euclidean 0.4431
spearman_euclidean 0.4481
pearson_dot 0.4017
spearman_dot 0.4134
pearson_max 0.5018
spearman_max 0.5334

Knowledge Distillation

Metric Value
negative_mse -19.7279

Translation

Metric Value
src2trg_accuracy 0.892
trg2src_accuracy 0.891
mean_accuracy 0.8915

Semantic Similarity

Metric Value
pearson_cosine 0.5263
spearman_cosine 0.5618
pearson_manhattan 0.5085
spearman_manhattan 0.5218
pearson_euclidean 0.5055
spearman_euclidean 0.5206
pearson_dot 0.3742
spearman_dot 0.3691
pearson_max 0.5263
spearman_max 0.5618

Knowledge Distillation

Metric Value
negative_mse -19.4724

Translation

Metric Value
src2trg_accuracy 0.9434
trg2src_accuracy 0.9465
mean_accuracy 0.9449

Semantic Similarity

Metric Value
pearson_cosine 0.4945
spearman_cosine 0.5021
pearson_manhattan 0.4445
spearman_manhattan 0.4284
pearson_euclidean 0.4357
spearman_euclidean 0.417
pearson_dot 0.3751
spearman_dot 0.3796
pearson_max 0.4945
spearman_max 0.5021

Knowledge Distillation

Metric Value
negative_mse -20.7547

Translation

Metric Value
src2trg_accuracy 0.7432
trg2src_accuracy 0.7432
mean_accuracy 0.7432

Semantic Similarity

Metric Value
pearson_cosine 0.5545
spearman_cosine 0.5819
pearson_manhattan 0.5104
spearman_manhattan 0.5088
pearson_euclidean 0.5046
spearman_euclidean 0.5053
pearson_dot 0.4726
spearman_dot 0.4298
pearson_max 0.5545
spearman_max 0.5819

Knowledge Distillation

Metric Value
negative_mse -19.7699

Translation

Metric Value
src2trg_accuracy 0.8781
trg2src_accuracy 0.8832
mean_accuracy 0.8807

Semantic Similarity

Metric Value
pearson_cosine 0.5064
spearman_cosine 0.525
pearson_manhattan 0.4517
spearman_manhattan 0.4623
pearson_euclidean 0.4423
spearman_euclidean 0.4507
pearson_dot 0.4202
spearman_dot 0.4225
pearson_max 0.5064
spearman_max 0.525

Training Details

Training Datasets

en-ar

  • Dataset: en-ar at d366ddd
  • Size: 5,000 training samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 27.3 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    حسناً ان ما نقوم به اليوم .. هو ان نجبر الطلاب لتعلم الرياضيات [0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]
    انها المادة الاهم .. [0.6257511377334595, -0.1750679910182953, -0.5734405517578125, 0.11480475962162018, 1.1682192087173462, ...]
    انا لا انفي لدقيقة واحدة ان الذين يهتمون بالحسابات اليدوية والذين هوايتهم القيام بذلك .. او القيام بالطرق التقليدية في اي مجال ان يقوموا بذلك كما يريدون . [-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]
  • Loss: MSELoss

en-fr

  • Dataset: en-fr at d366ddd
  • Size: 5,000 training samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 3 tokens
    • mean: 30.18 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Je ne crois pas que ce soit justifié. [-0.361753910779953, 0.7323777079582214, 0.6518164277076721, -0.8461216688156128, -0.007496988866478205, ...]
    Je fais cette distinction entre ce qu'on force les gens à faire et les matières générales, et la matière que quelqu'un va apprendre parce que ça lui plait et peut-être même exceller dans ce domaine. [0.3047865629196167, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]
    Quels sont les problèmes en relation avec ça? [0.2123892903327942, -0.09616081416606903, -0.41965243220329285, -0.5469444394111633, -0.6056491136550903, ...]
  • Loss: MSELoss

en-de

  • Dataset: en-de at d366ddd
  • Size: 5,000 training samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 27.04 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Ich denke, dass es sich aus diesem Grund lohnt, den Leuten das Rechnen von Hand beizubringen. [0.0960279330611229, 0.7833179831504822, -0.09527698159217834, 0.8104371428489685, 0.7545774579048157, ...]
    Außerdem gibt es ein paar bestimmte konzeptionelle Dinge, die das Rechnen per Hand rechtfertigen, aber ich glaube es sind sehr wenige. [-0.5939837098121643, 0.9714100956916809, 0.6800686717033386, -0.21585524082183838, -0.7509503364562988, ...]
    Eine Sache, die ich mich oft frage, ist Altgriechisch, und wie das zusammengehört. [-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]
  • Loss: MSELoss

en-es

  • Dataset: en-es at d366ddd
  • Size: 5,000 training samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 25.42 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Y luego hay ciertas aspectos conceptuales que pueden beneficiarse del cálculo a mano pero creo que son relativamente pocos. [-0.5939835906028748, 0.9714106917381287, 0.6800685524940491, -0.2158554196357727, -0.7509507536888123, ...]
    Algo que pregunto a menudo es sobre el griego antiguo y cómo se relaciona. [-0.09777048230171204, 0.07093209028244019, -0.42989012598991394, -0.1457514613866806, 1.4382753372192383, ...]
    Vean, lo que estamos haciendo ahora es forzar a la gente a aprender matemáticas. [0.3943225145339966, 0.18910610675811768, -0.3788299858570099, 0.4386662542819977, 0.2727023661136627, ...]
  • Loss: MSELoss

en-tr

  • Dataset: en-tr at d366ddd
  • Size: 5,000 training samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 24.72 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Eğer insanlar elle hesaba ilgililerse ya da öğrenmek için özel amaçları varsa konu ne kadar acayip olursa olsun bunu öğrenmeliler, engellemeyi bir an için bile önermiyorum. [-0.04564047232270241, 0.4971524775028229, 0.28066301345825195, -0.726702094078064, -0.17846377193927765, ...]
    İnsanların kendi ilgi alanlarını takip etmeleri, kesinlikle doğru bir şeydir. [0.2061387449502945, 0.5284574031829834, 0.3577779233455658, 0.28818392753601074, 0.17228049039840698, ...]
    Ben bir biçimde Antik Yunan hakkında ilgiliyimdir. ancak tüm nüfusu Antik Yunan gibi bir konu hakkında bilgi edinmeye zorlamamalıyız. [0.12050342559814453, 0.15652479231357574, 0.48636534810066223, -0.13693244755268097, 0.42764803767204285, ...]
  • Loss: MSELoss

en-it

  • Dataset: en-it at d366ddd
  • Size: 5,000 training samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 3 tokens
    • mean: 26.41 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Non credo che sia giustificato. [-0.36175352334976196, 0.7323781251907349, 0.651816189289093, -0.8461223840713501, -0.007496151141822338, ...]
    Perciò faccio distinzione tra quello che stiamo facendo fare alle persone, le materie che si ritengono principali, e le materie che le persone potrebbero seguire per loro interesse o forse a volte anche incitate a farlo. [0.3047865927219391, 0.5270194411277771, 0.26616284251213074, 0.2612147927284241, 0.1950961947441101, ...]
    Ma che argomenti porta la gente su questi temi? [0.2123885154724121, -0.09616123884916306, -0.4196523427963257, -0.5469440817832947, -0.6056501865386963, ...]
  • Loss: MSELoss

Evaluation Datasets

en-ar

  • Dataset: en-ar at d366ddd
  • Size: 993 evaluation samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 3 tokens
    • mean: 28.03 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    شكرا جزيلا كريس. [-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]
    انه فعلا شرف عظيم لي ان أصعد المنصة للمرة الثانية. أنا في غاية الامتنان. [0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]
    لقد بهرت فعلا بهذا المؤتمر, وأريد أن أشكركم جميعا على تعليقاتكم الطيبة على ما قلته تلك الليلة. [-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]
  • Loss: MSELoss

en-fr

  • Dataset: en-fr at d366ddd
  • Size: 992 evaluation samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 30.72 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Merci beaucoup, Chris. [-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]
    C'est vraiment un honneur de pouvoir venir sur cette scène une deuxième fois. Je suis très reconnaissant. [0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]
    J'ai été très impressionné par cette conférence, et je tiens à vous remercier tous pour vos nombreux et sympathiques commentaires sur ce que j'ai dit l'autre soir. [-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]
  • Loss: MSELoss

en-de

  • Dataset: en-de at d366ddd
  • Size: 991 evaluation samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 27.71 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Vielen Dank, Chris. [-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]
    Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür. [0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]
    Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend. [-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]
  • Loss: MSELoss

en-es

  • Dataset: en-es at d366ddd
  • Size: 990 evaluation samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 26.47 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Muchas gracias Chris. [-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]
    Y es en verdad un gran honor tener la oportunidad de venir a este escenario por segunda vez. Estoy extremadamente agradecido. [0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]
    He quedado conmovido por esta conferencia, y deseo agradecer a todos ustedes sus amables comentarios acerca de lo que tenía que decir la otra noche. [-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]
  • Loss: MSELoss

en-tr

  • Dataset: en-tr at d366ddd
  • Size: 993 evaluation samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 25.4 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Çok teşekkür ederim Chris. [-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]
    Bu sahnede ikinci kez yer alma fırsatına sahip olmak gerçekten büyük bir onur. Çok minnettarım. [0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]
    Bu konferansta çok mutlu oldum, ve anlattıklarımla ilgili güzel yorumlarınız için sizlere çok teşekkür ederim. [-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]
  • Loss: MSELoss

en-it

  • Dataset: en-it at d366ddd
  • Size: 993 evaluation samples
  • Columns: non_english and label
  • Approximate statistics based on the first 1000 samples:
    non_english label
    type string list
    details
    • min: 4 tokens
    • mean: 27.94 tokens
    • max: 128 tokens
    • size: 768 elements
  • Samples:
    non_english label
    Grazie mille, Chris. [-0.4331263303756714, 1.0602688789367676, -0.07791043072938919, -0.4170420169830322, 1.6768444776535034, ...]
    E’ veramente un grande onore venire su questo palco due volte. Vi sono estremamente grato. [0.27005696296691895, 0.5391750335693359, -0.2580486238002777, -0.6613674759864807, 0.6738830804824829, ...]
    Sono impressionato da questa conferenza, e voglio ringraziare tutti voi per i tanti, lusinghieri commenti, anche perché... Ne ho bisogno!! [-0.25320106744766235, 0.04791366308927536, -0.13174884021282196, -0.7357578277587891, 0.2366354614496231, ...]
  • Loss: MSELoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: False
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss en-ar loss en-it loss en-de loss en-fr loss en-es loss en-tr loss en-ar_mean_accuracy en-ar_negative_mse en-de_mean_accuracy en-de_negative_mse en-es_mean_accuracy en-es_negative_mse en-fr_mean_accuracy en-fr_negative_mse en-it_mean_accuracy en-it_negative_mse en-tr_mean_accuracy en-tr_negative_mse sts17-en-ar-test_spearman_max sts17-en-de-test_spearman_max sts17-en-tr-test_spearman_max sts17-es-en-test_spearman_max sts17-fr-en-test_spearman_max sts17-it-en-test_spearman_max
0.2110 100 0.5581 - - - - - - - - - - - - - - - - - - - - - - - -
0.4219 200 0.3071 - - - - - - - - - - - - - - - - - - - - - - - -
0.6329 300 0.2675 - - - - - - - - - - - - - - - - - - - - - - - -
0.8439 400 0.2606 - - - - - - - - - - - - - - - - - - - - - - - -
1.0549 500 0.2589 0.2519 0.2498 0.2511 0.2488 0.2503 0.2512 0.1254 -25.1903 0.2523 -25.1089 0.2591 -25.0276 0.2409 -24.8803 0.2180 -24.9768 0.1158 -25.1219 0.0308 0.1281 0.1610 0.1465 0.0552 0.0518
1.2658 600 0.2504 - - - - - - - - - - - - - - - - - - - - - - - -
1.4768 700 0.2427 - - - - - - - - - - - - - - - - - - - - - - - -
1.6878 800 0.2337 - - - - - - - - - - - - - - - - - - - - - - - -
1.8987 900 0.2246 - - - - - - - - - - - - - - - - - - - - - - - -
2.1097 1000 0.2197 0.2202 0.2157 0.2151 0.2147 0.2139 0.2218 0.5841 -22.0204 0.8012 -21.5087 0.8495 -21.3935 0.7959 -21.4660 0.7815 -21.5699 0.6007 -22.1778 0.3346 0.4013 0.4727 0.3353 0.3827 0.3292
2.3207 1100 0.2163 - - - - - - - - - - - - - - - - - - - - - - - -
2.5316 1200 0.2123 - - - - - - - - - - - - - - - - - - - - - - - -
2.7426 1300 0.2069 - - - - - - - - - - - - - - - - - - - - - - - -
2.9536 1400 0.2048 - - - - - - - - - - - - - - - - - - - - - - - -
3.1646 1500 0.2009 0.2086 0.2029 0.2022 0.2012 0.2002 0.2111 0.7367 -20.8567 0.8739 -20.2247 0.9303 -20.0215 0.8755 -20.1213 0.8600 -20.2900 0.7165 -21.1119 0.4087 0.5473 0.5551 0.4724 0.4882 0.4690
3.3755 1600 0.2019 - - - - - - - - - - - - - - - - - - - - - - - -
3.5865 1700 0.1989 - - - - - - - - - - - - - - - - - - - - - - - -
3.7975 1800 0.196 - - - - - - - - - - - - - - - - - - - - - - - -
4.0084 1900 0.1943 - - - - - - - - - - - - - - - - - - - - - - - -
4.2194 2000 0.194 0.2040 0.1977 0.1973 0.1962 0.1947 0.2075 0.7714 -20.3955 0.8915 -19.7279 0.9449 -19.4724 0.8942 -19.6232 0.8807 -19.7699 0.7432 -20.7547 0.4425 0.5618 0.5819 0.5021 0.5334 0.5250
4.4304 2100 0.1951 - - - - - - - - - - - - - - - - - - - - - - - -
4.6414 2200 0.1928 - - - - - - - - - - - - - - - - - - - - - - - -
4.8523 2300 0.1909 - - - - - - - - - - - - - - - - - - - - - - - -

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.060 kWh
  • Carbon Emitted: 0.023 kg of CO2
  • Hours Used: 0.179 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.0.0.dev0
  • Transformers: 4.41.0.dev0
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MSELoss

@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
Downloads last month
348
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it

Finetuned
(2502)
this model

Evaluation results