mpnet-base-allnli / README.md
tomaarsen's picture
tomaarsen HF staff
Model save
5fa33a7 verified
|
raw
history blame
35.4 kB
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_with_trainer
  - dataset_size:100K<n<1M
  - loss:SoftmaxLoss
  - loss:CosineSimilarityLoss
base_model: microsoft/mpnet-base
datasets:
  - nyu-mll/multi_nli
  - stanfordnlp/snli
  - mteb/stsbenchmark-sts
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: >-
      A taxi SUV drives past an urban construction site, as a man walks down the
      street in the other direction.
    sentences:
      - The woman is walking down the street with high heels.
      - A man is reading documents in a binder.
      - A man is chasing an SUV that is going in the same direction as him.
  - source_sentence: >-
      Young man running towards a tennis court while another is waiting in the
      other side of the net.
    sentences:
      - The person is cooking a hamburger.
      - A young man is running to grab a tennis ball.
      - A woman is dancing near a fire.
  - source_sentence: An asian woman sitting outside an outdoor market stall.
    sentences:
      - There are three workers
      - A woman sits outdoors.
      - Five women sit at a table.
  - source_sentence: >-
      All the same methods of analysis that are used with spoken languages apply
      successfully to signed languages.
    sentences:
      - >-
        One idea that's been going around at least since the 80s is that you can
        distinguish between Holds and Moves.
      - >-
        You only need two-dimensional trigonometry if you know the distances to
        the two stars and their angular separation.
      - A woman driving a car is talking to the man seated beside her.
  - source_sentence: >-
      Rouen is the ancient center of Normandy's thriving textile industry, and
      the place of Joan of Arc's martyrdom ' a national symbol of resistance to
      tyranny.
    sentences:
      - The islands are part of France now instead of just colonies.
      - >-
        Joan of Arc sacrificed her life at Rouen, which became an enduring
        symbol of opposition to tyranny.
      - I don't know how cold it got last night.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 6.863209894681815
  energy_consumed: 0.017656739339344318
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.068
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on microsoft/mpnet-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8344104750902503
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8294923795333993
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8316959259914674
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8331844817222047
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8272941934077804
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8294923795333993
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8344104825648291
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8294923795333993
            name: Spearman Dot
          - type: pearson_max
            value: 0.8344104825648291
            name: Pearson Max
          - type: spearman_max
            value: 0.8331844817222047
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.7776062173443514
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7642518713703523
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7788269653910183
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7659203139768728
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7763456809736229
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7642518713703523
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7776062158976489
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7642518713703523
            name: Spearman Dot
          - type: pearson_max
            value: 0.7788269653910183
            name: Pearson Max
          - type: spearman_max
            value: 0.7659203139768728
            name: Spearman Max

SentenceTransformer based on microsoft/mpnet-base

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the multi_nli, snli and stsb datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Dot Product
  • Training Datasets:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/mpnet-base-allnli")
# Run inference
sentences = [
    "Rouen is the ancient center of Normandy's thriving textile industry, and the place of Joan of Arc's martyrdom ' a national symbol of resistance to tyranny.",
    'Joan of Arc sacrificed her life at Rouen, which became an enduring symbol of opposition to tyranny.',
    'The islands are part of France now instead of just colonies.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8344
spearman_cosine 0.8295
pearson_manhattan 0.8317
spearman_manhattan 0.8332
pearson_euclidean 0.8273
spearman_euclidean 0.8295
pearson_dot 0.8344
spearman_dot 0.8295
pearson_max 0.8344
spearman_max 0.8332

Semantic Similarity

Metric Value
pearson_cosine 0.7776
spearman_cosine 0.7643
pearson_manhattan 0.7788
spearman_manhattan 0.7659
pearson_euclidean 0.7763
spearman_euclidean 0.7643
pearson_dot 0.7776
spearman_dot 0.7643
pearson_max 0.7788
spearman_max 0.7659

Training Details

Training Datasets

multi_nli

  • Dataset: multi_nli at da70db2
  • Size: 392,702 training samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 4 tokens
    • mean: 26.95 tokens
    • max: 189 tokens
    • min: 5 tokens
    • mean: 14.11 tokens
    • max: 49 tokens
    • 0: ~34.30%
    • 1: ~28.20%
    • 2: ~37.50%
  • Samples:
    premise hypothesis label
    Conceptually cream skimming has two basic dimensions - product and geography. Product and geography are what make cream skimming work. 1
    you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him You lose the things to the following level if the people recall. 0
    One of our number will carry out your instructions minutely. A member of my team will execute your orders with immense precision. 0
  • Loss: SoftmaxLoss

snli

  • Dataset: snli at cdb5c3d
  • Size: 549,367 training samples
  • Columns: snli_premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    snli_premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 17.38 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 10.7 tokens
    • max: 31 tokens
    • 0: ~33.40%
    • 1: ~33.30%
    • 2: ~33.30%
  • Samples:
    snli_premise hypothesis label
    A person on a horse jumps over a broken down airplane. A person is training his horse for a competition. 1
    A person on a horse jumps over a broken down airplane. A person is at a diner, ordering an omelette. 2
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. 0
  • Loss: SoftmaxLoss

stsb

  • Dataset: stsb at 8913289
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 6 tokens
    • mean: 10.0 tokens
    • max: 28 tokens
    • min: 5 tokens
    • mean: 9.95 tokens
    • max: 25 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    A plane is taking off. An air plane is taking off. 1.0
    A man is playing a large flute. A man is playing a flute. 0.76
    A man is spreading shreded cheese on a pizza. A man is spreading shredded cheese on an uncooked pizza. 0.76
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Datasets

multi_nli

  • Dataset: multi_nli at da70db2
  • Size: 100 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 5 tokens
    • mean: 27.67 tokens
    • max: 138 tokens
    • min: 6 tokens
    • mean: 13.48 tokens
    • max: 27 tokens
    • 0: ~35.00%
    • 1: ~31.00%
    • 2: ~34.00%
  • Samples:
    premise hypothesis label
    The new rights are nice enough Everyone really likes the newest benefits 1
    This site includes a list of all award winners and a searchable database of Government Executive articles. The Government Executive articles housed on the website are not able to be searched. 2
    uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him I like him for the most part, but would still enjoy seeing someone beat him. 0
  • Loss: SoftmaxLoss

snli

  • Dataset: snli at cdb5c3d
  • Size: 9,842 evaluation samples
  • Columns: snli_premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    snli_premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 18.44 tokens
    • max: 57 tokens
    • min: 5 tokens
    • mean: 10.57 tokens
    • max: 25 tokens
    • 0: ~33.10%
    • 1: ~33.30%
    • 2: ~33.60%
  • Samples:
    snli_premise hypothesis label
    Two women are embracing while holding to go packages. The sisters are hugging goodbye while holding to go packages after just eating lunch. 1
    Two women are embracing while holding to go packages. Two woman are holding packages. 0
    Two women are embracing while holding to go packages. The men are fighting outside a deli. 2
  • Loss: SoftmaxLoss

stsb

  • Dataset: stsb at 8913289
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 5 tokens
    • mean: 15.1 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 15.11 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 33
  • bf16: True
  • load_best_model_at_end: True
  • push_to_hub: True
  • hub_model_id: tomaarsen/mpnet-base-allnli
  • hub_private_repo: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 33
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: tomaarsen/mpnet-base-allnli
  • hub_strategy: every_save
  • hub_private_repo: True
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss multi nli loss snli loss stsb loss sts-dev_spearman_dot sts-test_spearman_cosine
0.0370 10 0.8347 - - - - -
0.0741 20 0.8269 - - - - -
0.1111 30 0.7036 1.0978 1.0984 0.0830 0.6636 -
0.1481 40 0.7889 - - - - -
0.1852 50 0.7948 - - - - -
0.2222 60 0.688 1.0976 1.0961 0.0679 0.7124 -
0.2593 70 0.7911 - - - - -
0.2963 80 0.7847 - - - - -
0.3333 90 0.6801 1.0950 1.0942 0.0522 0.7810 -
0.3704 100 0.7837 - - - - -
0.4074 110 0.7803 - - - - -
0.4444 120 0.6756 1.0978 1.0929 0.0441 0.8157 -
0.4815 130 0.7829 - - - - -
0.5185 140 0.7789 - - - - -
0.5556 150 0.6756 1.0954 1.0911 0.0433 0.8215 -
0.5926 160 0.7802 - - - - -
0.6296 170 0.7751 - - - - -
0.6667 180 0.6679 1.0934 1.0885 0.0401 0.8235 -
0.7037 190 0.7755 - - - - -
0.7407 200 0.775 - - - - -
0.7778 210 0.6694 1.0919 1.0859 0.0377 0.8295 -
0.8148 220 0.7733 - - - - -
0.8519 230 0.772 - - - - -
0.8889 240 0.6656 1.0891 1.0838 0.0365 0.8292 -
0.9259 250 0.7726 - - - - -
0.9630 260 0.7731 - - - - -
1.0 270 0.6674 1.0888 1.0833 0.0372 0.8295 0.7643
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.018 kWh
  • Carbon Emitted: 0.007 kg of CO2
  • Hours Used: 0.068 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.1.0.dev0
  • Transformers: 4.41.2
  • PyTorch: 2.3.0+cu121
  • Accelerate: 0.30.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}