File size: 24,734 Bytes
fd1a504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:Matryoshka2dLoss
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A woman is reading.
  sentences:
  - A woman is writing something.
  - A man helps a boy ride a bike.
  - A group wading across a ditch
- source_sentence: A man shoots a man.
  sentences:
  - A man with a pistol shoots another man.
  - Suicide bomber strikes in Syria
  - China and Taiwan hold historic talks
- source_sentence: A boy is vacuuming.
  sentences:
  - A little boy is vacuuming the floor.
  - 'Breivik: Jail term ''ridiculous'''
  - Glorious triple-gold night for Britain
- source_sentence: A man is spitting.
  sentences:
  - A man is speaking.
  - The boy is jumping into a lake.
  - 10 Things to Know for Thursday
- source_sentence: A plane in the sky.
  sentences:
  - Two airplanes in the sky.
  - Nelson Mandela undergoes surgery
  - Nelson Mandela undergoes surgery
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 69.2573690422145
  energy_consumed: 0.1781760038338226
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.626
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.8395203447657347
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8424556124488326
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8432537220190851
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8435994230515586
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8440900768179745
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8449067313707376
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.763767029856877
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7569706383510251
      name: Spearman Dot
    - type: pearson_max
      value: 0.8440900768179745
      name: Pearson Max
    - type: spearman_max
      value: 0.8449067313707376
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.8186702838538092
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8170686920551
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8117192659894803
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.804879002947593
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8127154744140831
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8058410028545979
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7396245702595934
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7256120569318246
      name: Spearman Dot
    - type: pearson_max
      value: 0.8186702838538092
      name: Pearson Max
    - type: spearman_max
      value: 0.8170686920551
      name: Spearman Max
---

# SentenceTransformer based on distilbert/distilroberta-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co./distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-2d-matryoshka")
# Run inference
sentences = [
    'A plane in the sky.',
    'Two airplanes in the sky.',
    'Nelson Mandela undergoes surgery',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8395     |
| **spearman_cosine** | **0.8425** |
| pearson_manhattan   | 0.8433     |
| spearman_manhattan  | 0.8436     |
| pearson_euclidean   | 0.8441     |
| spearman_euclidean  | 0.8449     |
| pearson_dot         | 0.7638     |
| spearman_dot        | 0.757      |
| pearson_max         | 0.8441     |
| spearman_max        | 0.8449     |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8187     |
| **spearman_cosine** | **0.8171** |
| pearson_manhattan   | 0.8117     |
| spearman_manhattan  | 0.8049     |
| pearson_euclidean   | 0.8127     |
| spearman_euclidean  | 0.8058     |
| pearson_dot         | 0.7396     |
| spearman_dot        | 0.7256     |
| pearson_max         | 0.8187     |
| spearman_max        | 0.8171     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/all-nli

* Dataset: [sentence-transformers/all-nli](https://huggingface.co./datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co./datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe)
* Size: 557,850 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                         | negative                                                                         |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | string                                                                           |
  | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
* Samples:
  | anchor                                                                     | positive                                         | negative                                                   |
  |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
  | <code>A person on a horse jumps over a broken down airplane.</code>        | <code>A person is outdoors, on a horse.</code>   | <code>A person is at a diner, ordering an omelette.</code> |
  | <code>Children smiling and waving at camera</code>                         | <code>There are children present</code>          | <code>The kids are frowning</code>                         |
  | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code>             |
* Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshka2dloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "n_layers_per_step": 1,
      "last_layer_weight": 1.0,
      "prior_layers_weight": 1.0,
      "kl_div_weight": 1.0,
      "kl_temperature": 0.3,
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": 1
  }
  ```

### Evaluation Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.0 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                         | sentence2                                             | score             |
  |:--------------------------------------------------|:------------------------------------------------------|:------------------|
  | <code>A man with a hard hat is dancing.</code>    | <code>A man wearing a hard hat is dancing.</code>     | <code>1.0</code>  |
  | <code>A young child is riding a horse.</code>     | <code>A child is riding a horse.</code>               | <code>0.95</code> |
  | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code>  |
* Loss: [<code>Matryoshka2dLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshka2dloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "n_layers_per_step": 1,
      "last_layer_weight": 1.0,
      "prior_layers_weight": 1.0,
      "kl_div_weight": 1.0,
      "kl_temperature": 0.3,
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": 1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:----:|:-------------:|:------:|:-----------------------:|:------------------------:|
| 0.0229 | 100  | 6.2779        | 3.9959 | 0.8008                  | -                        |
| 0.0459 | 200  | 4.3212        | 3.5818 | 0.7956                  | -                        |
| 0.0688 | 300  | 3.7135        | 3.4422 | 0.7940                  | -                        |
| 0.0918 | 400  | 3.5567        | 3.5458 | 0.7951                  | -                        |
| 0.1147 | 500  | 3.1297        | 3.1253 | 0.8050                  | -                        |
| 0.1376 | 600  | 2.7001        | 3.4366 | 0.7996                  | -                        |
| 0.1606 | 700  | 2.8664        | 3.6609 | 0.8033                  | -                        |
| 0.1835 | 800  | 2.6656        | 3.3736 | 0.7975                  | -                        |
| 0.2065 | 900  | 2.633         | 3.3735 | 0.8076                  | -                        |
| 0.2294 | 1000 | 2.4335        | 3.6499 | 0.7996                  | -                        |
| 0.2524 | 1100 | 2.4165        | 3.6301 | 0.8015                  | -                        |
| 0.2753 | 1200 | 2.2942        | 3.1541 | 0.7994                  | -                        |
| 0.2982 | 1300 | 2.2402        | 3.4284 | 0.7977                  | -                        |
| 0.3212 | 1400 | 2.2148        | 3.3775 | 0.7988                  | -                        |
| 0.3441 | 1500 | 2.2285        | 3.6097 | 0.8016                  | -                        |
| 0.3671 | 1600 | 2.0591        | 3.3839 | 0.7926                  | -                        |
| 0.3900 | 1700 | 2.0253        | 3.1113 | 0.7981                  | -                        |
| 0.4129 | 1800 | 2.0244        | 3.8289 | 0.7954                  | -                        |
| 0.4359 | 1900 | 1.8582        | 3.3515 | 0.8000                  | -                        |
| 0.4588 | 2000 | 1.977         | 3.3054 | 0.7917                  | -                        |
| 0.4818 | 2100 | 1.9028        | 3.2166 | 0.7927                  | -                        |
| 0.5047 | 2200 | 1.8316        | 3.6504 | 0.7955                  | -                        |
| 0.5276 | 2300 | 1.8404        | 3.2822 | 0.7843                  | -                        |
| 0.5506 | 2400 | 1.8455        | 3.2583 | 0.7941                  | -                        |
| 0.5735 | 2500 | 1.9488        | 3.3970 | 0.7971                  | -                        |
| 0.5965 | 2600 | 1.9403        | 2.8948 | 0.7959                  | -                        |
| 0.6194 | 2700 | 1.8884        | 3.2227 | 0.8008                  | -                        |
| 0.6423 | 2800 | 1.8655        | 3.1948 | 0.7920                  | -                        |
| 0.6653 | 2900 | 1.8567        | 3.4374 | 0.7913                  | -                        |
| 0.6882 | 3000 | 1.8423        | 3.1118 | 0.7949                  | -                        |
| 0.7112 | 3100 | 1.7475        | 3.1359 | 0.8062                  | -                        |
| 0.7341 | 3200 | 1.8166        | 2.9927 | 0.7984                  | -                        |
| 0.7571 | 3300 | 1.5626        | 3.5143 | 0.8405                  | -                        |
| 0.7800 | 3400 | 1.2038        | 3.3909 | 0.8411                  | -                        |
| 0.8029 | 3500 | 1.1579        | 3.2458 | 0.8413                  | -                        |
| 0.8259 | 3600 | 1.0978        | 3.1592 | 0.8404                  | -                        |
| 0.8488 | 3700 | 1.0283        | 2.9557 | 0.8408                  | -                        |
| 0.8718 | 3800 | 0.9993        | 3.4073 | 0.8430                  | -                        |
| 0.8947 | 3900 | 0.9727        | 3.0570 | 0.8434                  | -                        |
| 0.9176 | 4000 | 0.9692        | 2.9357 | 0.8439                  | -                        |
| 0.9406 | 4100 | 0.9412        | 2.9494 | 0.8428                  | -                        |
| 0.9635 | 4200 | 1.0063        | 3.4047 | 0.8422                  | -                        |
| 0.9865 | 4300 | 0.9678        | 3.4299 | 0.8425                  | -                        |
| 1.0    | 4359 | -             | -      | -                       | 0.8171                   |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.178 kWh
- **Carbon Emitted**: 0.069 kg of CO2
- **Hours Used**: 0.626 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### Matryoshka2dLoss
```bibtex
@misc{li20242d,
    title={2D Matryoshka Sentence Embeddings}, 
    author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
    year={2024},
    eprint={2402.14776},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->