SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the sentence-transformers/all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilroberta-base-nli-2d-matryoshka")
# Run inference
sentences = [
'A plane in the sky.',
'Two airplanes in the sky.',
'Nelson Mandela undergoes surgery',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8395 |
spearman_cosine | 0.8425 |
pearson_manhattan | 0.8433 |
spearman_manhattan | 0.8436 |
pearson_euclidean | 0.8441 |
spearman_euclidean | 0.8449 |
pearson_dot | 0.7638 |
spearman_dot | 0.757 |
pearson_max | 0.8441 |
spearman_max | 0.8449 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8187 |
spearman_cosine | 0.8171 |
pearson_manhattan | 0.8117 |
spearman_manhattan | 0.8049 |
pearson_euclidean | 0.8127 |
spearman_euclidean | 0.8058 |
pearson_dot | 0.7396 |
spearman_dot | 0.7256 |
pearson_max | 0.8187 |
spearman_max | 0.8171 |
Training Details
Training Dataset
sentence-transformers/all-nli
- Dataset: sentence-transformers/all-nli at 65dd388
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
Matryoshka2dLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.0 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 14.99 tokens
- max: 61 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
Matryoshka2dLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "n_layers_per_step": 1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": 1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Falseper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Nonedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
0.0229 | 100 | 6.2779 | 3.9959 | 0.8008 | - |
0.0459 | 200 | 4.3212 | 3.5818 | 0.7956 | - |
0.0688 | 300 | 3.7135 | 3.4422 | 0.7940 | - |
0.0918 | 400 | 3.5567 | 3.5458 | 0.7951 | - |
0.1147 | 500 | 3.1297 | 3.1253 | 0.8050 | - |
0.1376 | 600 | 2.7001 | 3.4366 | 0.7996 | - |
0.1606 | 700 | 2.8664 | 3.6609 | 0.8033 | - |
0.1835 | 800 | 2.6656 | 3.3736 | 0.7975 | - |
0.2065 | 900 | 2.633 | 3.3735 | 0.8076 | - |
0.2294 | 1000 | 2.4335 | 3.6499 | 0.7996 | - |
0.2524 | 1100 | 2.4165 | 3.6301 | 0.8015 | - |
0.2753 | 1200 | 2.2942 | 3.1541 | 0.7994 | - |
0.2982 | 1300 | 2.2402 | 3.4284 | 0.7977 | - |
0.3212 | 1400 | 2.2148 | 3.3775 | 0.7988 | - |
0.3441 | 1500 | 2.2285 | 3.6097 | 0.8016 | - |
0.3671 | 1600 | 2.0591 | 3.3839 | 0.7926 | - |
0.3900 | 1700 | 2.0253 | 3.1113 | 0.7981 | - |
0.4129 | 1800 | 2.0244 | 3.8289 | 0.7954 | - |
0.4359 | 1900 | 1.8582 | 3.3515 | 0.8000 | - |
0.4588 | 2000 | 1.977 | 3.3054 | 0.7917 | - |
0.4818 | 2100 | 1.9028 | 3.2166 | 0.7927 | - |
0.5047 | 2200 | 1.8316 | 3.6504 | 0.7955 | - |
0.5276 | 2300 | 1.8404 | 3.2822 | 0.7843 | - |
0.5506 | 2400 | 1.8455 | 3.2583 | 0.7941 | - |
0.5735 | 2500 | 1.9488 | 3.3970 | 0.7971 | - |
0.5965 | 2600 | 1.9403 | 2.8948 | 0.7959 | - |
0.6194 | 2700 | 1.8884 | 3.2227 | 0.8008 | - |
0.6423 | 2800 | 1.8655 | 3.1948 | 0.7920 | - |
0.6653 | 2900 | 1.8567 | 3.4374 | 0.7913 | - |
0.6882 | 3000 | 1.8423 | 3.1118 | 0.7949 | - |
0.7112 | 3100 | 1.7475 | 3.1359 | 0.8062 | - |
0.7341 | 3200 | 1.8166 | 2.9927 | 0.7984 | - |
0.7571 | 3300 | 1.5626 | 3.5143 | 0.8405 | - |
0.7800 | 3400 | 1.2038 | 3.3909 | 0.8411 | - |
0.8029 | 3500 | 1.1579 | 3.2458 | 0.8413 | - |
0.8259 | 3600 | 1.0978 | 3.1592 | 0.8404 | - |
0.8488 | 3700 | 1.0283 | 2.9557 | 0.8408 | - |
0.8718 | 3800 | 0.9993 | 3.4073 | 0.8430 | - |
0.8947 | 3900 | 0.9727 | 3.0570 | 0.8434 | - |
0.9176 | 4000 | 0.9692 | 2.9357 | 0.8439 | - |
0.9406 | 4100 | 0.9412 | 2.9494 | 0.8428 | - |
0.9635 | 4200 | 1.0063 | 3.4047 | 0.8422 | - |
0.9865 | 4300 | 0.9678 | 3.4299 | 0.8425 | - |
1.0 | 4359 | - | - | - | 0.8171 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.178 kWh
- Carbon Emitted: 0.069 kg of CO2
- Hours Used: 0.626 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Matryoshka2dLoss
@misc{li20242d,
title={2D Matryoshka Sentence Embeddings},
author={Xianming Li and Zongxi Li and Jing Li and Haoran Xie and Qing Li},
year={2024},
eprint={2402.14776},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tomaarsen/distilroberta-base-nli-2d-matryoshka
Base model
distilbert/distilroberta-baseEvaluation results
- Pearson Cosine on sts devself-reported0.840
- Spearman Cosine on sts devself-reported0.842
- Pearson Manhattan on sts devself-reported0.843
- Spearman Manhattan on sts devself-reported0.844
- Pearson Euclidean on sts devself-reported0.844
- Spearman Euclidean on sts devself-reported0.845
- Pearson Dot on sts devself-reported0.764
- Spearman Dot on sts devself-reported0.757
- Pearson Max on sts devself-reported0.844
- Spearman Max on sts devself-reported0.845