File size: 33,056 Bytes
354ceec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
---

tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1000000
- loss:DenoisingAutoEncoderLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: He wound up homeless in the Mission District, playing for change
    in the streets.
  sentences:
  - He wound up homeless, playing in streets
  - It line-up of professional footballers,, firefighters and survivors.
  - A (Dakota) belonging to the Dutch Air crash-landed near Beswick (Beswick Creek
    now Barunga?
- source_sentence: The division remained near Arkhangelsk until the beginning of August,
    when it was shipped across the White Sea to Murmansk.
  sentences:
  - The division remained near Arkhangelsk until the beginning of August, when it
    was shipped across White Sea to Murmansk.
  - The building is and.
  - Maxim Triesman born October) is politician banker trade union leader.
- source_sentence: '"Leper," the last song on the album, was left as an instrumental

    as Jourgensen had left the studio earlier than scheduled and did not care to write

    any lyrics.'
  sentences:
  - There produced the viral host cells processes, more suitable environment for viral
    replication transcription.
  - As a the to
  - Leper, the song on the album was left as an as Jourgensen had left the studio
    scheduled and did care to any lyrics
- source_sentence: Prince and princess have given Gerda her their golden coach so
    she can continue her search for Kay.
  sentences:
  - and princess given Gerda their golden coach so she can her search for Kay.
  - handled the cinematography
  - University Hoekstra was Professor of and Department of Multidisciplinary Water.
- source_sentence: While the early models stayed close to their original form, eight
    subsequent generations varied substantially in size and styling.
  sentences:
  - While the stayed close their, eight generations varied substantially in size and
  - Their influence, his's own tradition, his special organization all combined to
    divert the young into a political career
  -  U  cross of the river are a recent
datasets:
- princeton-nlp/datasets-for-simcse
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
co2_eq_emissions:
  emissions: 556.5173349579181
  energy_consumed: 1.4317326253991955
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 4.403
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.6732163313155011
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6765812652563955
      name: Spearman Cosine
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.6424591318281525
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6322331484751982
      name: Spearman Cosine
---


# SentenceTransformer based on google-bert/bert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) on the [datasets-for-simcse](https://huggingface.co./datasets/princeton-nlp/datasets-for-simcse) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 75 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [datasets-for-simcse](https://huggingface.co./datasets/princeton-nlp/datasets-for-simcse)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/bert-base-uncased-stsb-tsdae")

# Run inference

sentences = [

    'While the early models stayed close to their original form, eight subsequent generations varied substantially in size and styling.',

    'While the stayed close their, eight generations varied substantially in size and',

    '“ U ” cross of the river are a recent',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Datasets: `sts-dev` and `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | sts-dev    | sts-test   |
|:--------------------|:-----------|:-----------|
| pearson_cosine      | 0.6732     | 0.6425     |

| **spearman_cosine** | **0.6766** | **0.6322** |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### datasets-for-simcse



* Dataset: [datasets-for-simcse](https://huggingface.co./datasets/princeton-nlp/datasets-for-simcse) at [e145e8b](https://huggingface.co./datasets/princeton-nlp/datasets-for-simcse/tree/e145e8bb659b2aa2669f32ef79cb4cdef6c58fef)

* Size: 1,000,000 training samples

* Columns: <code>text</code> and <code>noisy</code>

* Approximate statistics based on the first 1000 samples:

  |         | text                                                                              | noisy                                                                             |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            |

  | details | <ul><li>min: 3 tokens</li><li>mean: 27.96 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.68 tokens</li><li>max: 75 tokens</li></ul> |

* Samples:

  | text                                                                                                                                         | noisy                                                              |

  |:---------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|

  | <code>White was born in Iver, England.</code>                                                                                                | <code>White was born in Iver,</code>                               |

  | <code>The common mangrove plants are "Rhizophora mucronata", "Sonneratia caseolaris", "Avicennia" spp., and "Aegiceras corniculatum".</code> | <code>plants are Rhizophora mucronata" "Sonneratia, spp.,".</code> |

  | <code>H3K9ac and H3K14ac have been shown to be part of the active promoter state.</code>                                                     | <code>H3K9ac been part of active promoter state.</code>            |

* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)



### Evaluation Dataset



#### datasets-for-simcse



* Dataset: [datasets-for-simcse](https://huggingface.co./datasets/princeton-nlp/datasets-for-simcse) at [e145e8b](https://huggingface.co./datasets/princeton-nlp/datasets-for-simcse/tree/e145e8bb659b2aa2669f32ef79cb4cdef6c58fef)

* Size: 1,000,000 evaluation samples

* Columns: <code>text</code> and <code>noisy</code>

* Approximate statistics based on the first 1000 samples:

  |         | text                                                                              | noisy                                                                             |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            |

  | details | <ul><li>min: 3 tokens</li><li>mean: 28.12 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.79 tokens</li><li>max: 66 tokens</li></ul> |

* Samples:

  | text                                                                                                                                                                                                                             | noisy                                                                                                                                                                   |

  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>Philippe Hervé (born 16 April 1959) is a French water polo player.</code>                                                                                                                                                  | <code>Philippe Hervé born April 1959 is French</code>                                                                                                                   |

  | <code>lies at the very edge of Scottish offshore waters, close to the maritime boundary with Norway.</code>                                                                                                                      | <code>the edge Scottish offshore waters close to maritime boundary with Norway</code>                                                                                   |

  | <code>The place is an exceptional example of the forced migration of convicts (Vinegar Hill rebels) and the development associated with punishment and reform, particularly convict labour and the associated coal mines.</code> | <code>The is an example of forced migration of convicts (Vinegar rebels and the development punishment and reform, particularly convict and the associated coal.</code> |

* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps
- `learning_rate`: 3e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch

- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step   | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|:------:|:------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|
| -1     | -1     | -             | -               | 0.3173                  | -                        |
| 0.0081 | 1000   | 7.5472        | -               | -                       | -                        |
| 0.0162 | 2000   | 6.0196        | -               | -                       | -                        |
| 0.0242 | 3000   | 5.4872        | -               | -                       | -                        |
| 0.0323 | 4000   | 5.1452        | -               | -                       | -                        |
| 0.0404 | 5000   | 4.8099        | -               | -                       | -                        |
| 0.0485 | 6000   | 4.5211        | -               | -                       | -                        |
| 0.0566 | 7000   | 4.2967        | -               | -                       | -                        |
| 0.0646 | 8000   | 4.1411        | -               | -                       | -                        |
| 0.0727 | 9000   | 4.031         | -               | -                       | -                        |
| 0.0808 | 10000  | 3.9636        | 3.8297          | 0.7237                  | -                        |
| 0.0889 | 11000  | 3.9046        | -               | -                       | -                        |
| 0.0970 | 12000  | 3.8138        | -               | -                       | -                        |
| 0.1051 | 13000  | 3.7859        | -               | -                       | -                        |
| 0.1131 | 14000  | 3.7237        | -               | -                       | -                        |
| 0.1212 | 15000  | 3.6881        | -               | -                       | -                        |
| 0.1293 | 16000  | 3.6133        | -               | -                       | -                        |
| 0.1374 | 17000  | 3.5777        | -               | -                       | -                        |
| 0.1455 | 18000  | 3.5285        | -               | -                       | -                        |
| 0.1535 | 19000  | 3.4974        | -               | -                       | -                        |
| 0.1616 | 20000  | 3.4421        | 3.3523          | 0.6978                  | -                        |
| 0.1697 | 21000  | 3.416         | -               | -                       | -                        |
| 0.1778 | 22000  | 3.4143        | -               | -                       | -                        |
| 0.1859 | 23000  | 3.3661        | -               | -                       | -                        |
| 0.1939 | 24000  | 3.3408        | -               | -                       | -                        |
| 0.2020 | 25000  | 3.3079        | -               | -                       | -                        |
| 0.2101 | 26000  | 3.2873        | -               | -                       | -                        |
| 0.2182 | 27000  | 3.2639        | -               | -                       | -                        |
| 0.2263 | 28000  | 3.2323        | -               | -                       | -                        |
| 0.2343 | 29000  | 3.2416        | -               | -                       | -                        |
| 0.2424 | 30000  | 3.2117        | 3.1015          | 0.6895                  | -                        |
| 0.2505 | 31000  | 3.1868        | -               | -                       | -                        |
| 0.2586 | 32000  | 3.1576        | -               | -                       | -                        |
| 0.2667 | 33000  | 3.1619        | -               | -                       | -                        |
| 0.2747 | 34000  | 3.1445        | -               | -                       | -                        |
| 0.2828 | 35000  | 3.1387        | -               | -                       | -                        |
| 0.2909 | 36000  | 3.1159        | -               | -                       | -                        |
| 0.2990 | 37000  | 3.09          | -               | -                       | -                        |
| 0.3071 | 38000  | 3.0771        | -               | -                       | -                        |
| 0.3152 | 39000  | 3.065         | -               | -                       | -                        |
| 0.3232 | 40000  | 3.0589        | 2.9535          | 0.6885                  | -                        |
| 0.3313 | 41000  | 3.0539        | -               | -                       | -                        |
| 0.3394 | 42000  | 3.0211        | -               | -                       | -                        |
| 0.3475 | 43000  | 3.0158        | -               | -                       | -                        |
| 0.3556 | 44000  | 3.0172        | -               | -                       | -                        |
| 0.3636 | 45000  | 2.9912        | -               | -                       | -                        |
| 0.3717 | 46000  | 2.9776        | -               | -                       | -                        |
| 0.3798 | 47000  | 2.9539        | -               | -                       | -                        |
| 0.3879 | 48000  | 2.9753        | -               | -                       | -                        |
| 0.3960 | 49000  | 2.9467        | -               | -                       | -                        |
| 0.4040 | 50000  | 2.9429        | 2.8288          | 0.6830                  | -                        |
| 0.4121 | 51000  | 2.9243        | -               | -                       | -                        |
| 0.4202 | 52000  | 2.9273        | -               | -                       | -                        |
| 0.4283 | 53000  | 2.9118        | -               | -                       | -                        |
| 0.4364 | 54000  | 2.9068        | -               | -                       | -                        |
| 0.4444 | 55000  | 2.8961        | -               | -                       | -                        |
| 0.4525 | 56000  | 2.8621        | -               | -                       | -                        |
| 0.4606 | 57000  | 2.8825        | -               | -                       | -                        |
| 0.4687 | 58000  | 2.8466        | -               | -                       | -                        |
| 0.4768 | 59000  | 2.868         | -               | -                       | -                        |
| 0.4848 | 60000  | 2.8372        | 2.7335          | 0.6871                  | -                        |
| 0.4929 | 61000  | 2.8322        | -               | -                       | -                        |
| 0.5010 | 62000  | 2.8239        | -               | -                       | -                        |
| 0.5091 | 63000  | 2.8148        | -               | -                       | -                        |
| 0.5172 | 64000  | 2.8137        | -               | -                       | -                        |
| 0.5253 | 65000  | 2.8043        | -               | -                       | -                        |
| 0.5333 | 66000  | 2.7973        | -               | -                       | -                        |
| 0.5414 | 67000  | 2.7739        | -               | -                       | -                        |
| 0.5495 | 68000  | 2.7694        | -               | -                       | -                        |
| 0.5576 | 69000  | 2.755         | -               | -                       | -                        |
| 0.5657 | 70000  | 2.7846        | 2.6422          | 0.6773                  | -                        |
| 0.5737 | 71000  | 2.7246        | -               | -                       | -                        |
| 0.5818 | 72000  | 2.7438        | -               | -                       | -                        |
| 0.5899 | 73000  | 2.7314        | -               | -                       | -                        |
| 0.5980 | 74000  | 2.7213        | -               | -                       | -                        |
| 0.6061 | 75000  | 2.7402        | -               | -                       | -                        |
| 0.6141 | 76000  | 2.6955        | -               | -                       | -                        |
| 0.6222 | 77000  | 2.7131        | -               | -                       | -                        |
| 0.6303 | 78000  | 2.6951        | -               | -                       | -                        |
| 0.6384 | 79000  | 2.6812        | -               | -                       | -                        |
| 0.6465 | 80000  | 2.6844        | 2.5743          | 0.6827                  | -                        |
| 0.6545 | 81000  | 2.665         | -               | -                       | -                        |
| 0.6626 | 82000  | 2.6528        | -               | -                       | -                        |
| 0.6707 | 83000  | 2.6819        | -               | -                       | -                        |
| 0.6788 | 84000  | 2.6529        | -               | -                       | -                        |
| 0.6869 | 85000  | 2.6665        | -               | -                       | -                        |
| 0.6949 | 86000  | 2.6554        | -               | -                       | -                        |
| 0.7030 | 87000  | 2.6299        | -               | -                       | -                        |
| 0.7111 | 88000  | 2.659         | -               | -                       | -                        |
| 0.7192 | 89000  | 2.632         | -               | -                       | -                        |
| 0.7273 | 90000  | 2.6209        | 2.5051          | 0.6782                  | -                        |
| 0.7354 | 91000  | 2.6023        | -               | -                       | -                        |
| 0.7434 | 92000  | 2.6226        | -               | -                       | -                        |
| 0.7515 | 93000  | 2.6057        | -               | -                       | -                        |
| 0.7596 | 94000  | 2.601         | -               | -                       | -                        |
| 0.7677 | 95000  | 2.5888        | -               | -                       | -                        |
| 0.7758 | 96000  | 2.5811        | -               | -                       | -                        |
| 0.7838 | 97000  | 2.565         | -               | -                       | -                        |
| 0.7919 | 98000  | 2.5727        | -               | -                       | -                        |
| 0.8    | 99000  | 2.5863        | -               | -                       | -                        |
| 0.8081 | 100000 | 2.5534        | 2.4526          | 0.6799                  | -                        |
| 0.8162 | 101000 | 2.5423        | -               | -                       | -                        |
| 0.8242 | 102000 | 2.5655        | -               | -                       | -                        |
| 0.8323 | 103000 | 2.5394        | -               | -                       | -                        |
| 0.8404 | 104000 | 2.5217        | -               | -                       | -                        |
| 0.8485 | 105000 | 2.5534        | -               | -                       | -                        |
| 0.8566 | 106000 | 2.5264        | -               | -                       | -                        |
| 0.8646 | 107000 | 2.5481        | -               | -                       | -                        |
| 0.8727 | 108000 | 2.5508        | -               | -                       | -                        |
| 0.8808 | 109000 | 2.5302        | -               | -                       | -                        |
| 0.8889 | 110000 | 2.5223        | 2.4048          | 0.6771                  | -                        |
| 0.8970 | 111000 | 2.5274        | -               | -                       | -                        |
| 0.9051 | 112000 | 2.515         | -               | -                       | -                        |
| 0.9131 | 113000 | 2.5088        | -               | -                       | -                        |
| 0.9212 | 114000 | 2.5035        | -               | -                       | -                        |
| 0.9293 | 115000 | 2.495         | -               | -                       | -                        |
| 0.9374 | 116000 | 2.5066        | -               | -                       | -                        |
| 0.9455 | 117000 | 2.4858        | -               | -                       | -                        |
| 0.9535 | 118000 | 2.4803        | -               | -                       | -                        |
| 0.9616 | 119000 | 2.506         | -               | -                       | -                        |
| 0.9697 | 120000 | 2.4906        | 2.3738          | 0.6766                  | -                        |
| 0.9778 | 121000 | 2.5027        | -               | -                       | -                        |
| 0.9859 | 122000 | 2.4858        | -               | -                       | -                        |
| 0.9939 | 123000 | 2.4928        | -               | -                       | -                        |
| -1     | -1     | -             | -               | -                       | 0.6322                   |

</details>

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 1.432 kWh
- **Carbon Emitted**: 0.557 kg of CO2
- **Hours Used**: 4.403 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 2.20.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### DenoisingAutoEncoderLoss
```bibtex

@inproceedings{wang-2021-TSDAE,

    title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",

    author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",

    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",

    month = nov,

    year = "2021",

    address = "Punta Cana, Dominican Republic",

    publisher = "Association for Computational Linguistics",

    pages = "671--688",

    url = "https://arxiv.org/abs/2104.06979",

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->