SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the datasets-for-simcse dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 75 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-stsb-tsdae")
# Run inference
sentences = [
'While the early models stayed close to their original form, eight subsequent generations varied substantially in size and styling.',
'While the stayed close their, eight generations varied substantially in size and',
'“ U ” cross of the river are a recent',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-dev
andsts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts-dev | sts-test |
---|---|---|
pearson_cosine | 0.6732 | 0.6425 |
spearman_cosine | 0.6766 | 0.6322 |
Training Details
Training Dataset
datasets-for-simcse
- Dataset: datasets-for-simcse at e145e8b
- Size: 1,000,000 training samples
- Columns:
text
andnoisy
- Approximate statistics based on the first 1000 samples:
text noisy type string string details - min: 3 tokens
- mean: 27.96 tokens
- max: 75 tokens
- min: 3 tokens
- mean: 17.68 tokens
- max: 75 tokens
- Samples:
text noisy White was born in Iver, England.
White was born in Iver,
The common mangrove plants are "Rhizophora mucronata", "Sonneratia caseolaris", "Avicennia" spp., and "Aegiceras corniculatum".
plants are Rhizophora mucronata" "Sonneratia, spp.,".
H3K9ac and H3K14ac have been shown to be part of the active promoter state.
H3K9ac been part of active promoter state.
- Loss:
DenoisingAutoEncoderLoss
Evaluation Dataset
datasets-for-simcse
- Dataset: datasets-for-simcse at e145e8b
- Size: 1,000,000 evaluation samples
- Columns:
text
andnoisy
- Approximate statistics based on the first 1000 samples:
text noisy type string string details - min: 3 tokens
- mean: 28.12 tokens
- max: 75 tokens
- min: 3 tokens
- mean: 17.79 tokens
- max: 66 tokens
- Samples:
text noisy Philippe Hervé (born 16 April 1959) is a French water polo player.
Philippe Hervé born April 1959 is French
lies at the very edge of Scottish offshore waters, close to the maritime boundary with Norway.
the edge Scottish offshore waters close to maritime boundary with Norway
The place is an exceptional example of the forced migration of convicts (Vinegar Hill rebels) and the development associated with punishment and reform, particularly convict labour and the associated coal mines.
The is an example of forced migration of convicts (Vinegar rebels and the development punishment and reform, particularly convict and the associated coal.
- Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 3e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.3173 | - |
0.0081 | 1000 | 7.5472 | - | - | - |
0.0162 | 2000 | 6.0196 | - | - | - |
0.0242 | 3000 | 5.4872 | - | - | - |
0.0323 | 4000 | 5.1452 | - | - | - |
0.0404 | 5000 | 4.8099 | - | - | - |
0.0485 | 6000 | 4.5211 | - | - | - |
0.0566 | 7000 | 4.2967 | - | - | - |
0.0646 | 8000 | 4.1411 | - | - | - |
0.0727 | 9000 | 4.031 | - | - | - |
0.0808 | 10000 | 3.9636 | 3.8297 | 0.7237 | - |
0.0889 | 11000 | 3.9046 | - | - | - |
0.0970 | 12000 | 3.8138 | - | - | - |
0.1051 | 13000 | 3.7859 | - | - | - |
0.1131 | 14000 | 3.7237 | - | - | - |
0.1212 | 15000 | 3.6881 | - | - | - |
0.1293 | 16000 | 3.6133 | - | - | - |
0.1374 | 17000 | 3.5777 | - | - | - |
0.1455 | 18000 | 3.5285 | - | - | - |
0.1535 | 19000 | 3.4974 | - | - | - |
0.1616 | 20000 | 3.4421 | 3.3523 | 0.6978 | - |
0.1697 | 21000 | 3.416 | - | - | - |
0.1778 | 22000 | 3.4143 | - | - | - |
0.1859 | 23000 | 3.3661 | - | - | - |
0.1939 | 24000 | 3.3408 | - | - | - |
0.2020 | 25000 | 3.3079 | - | - | - |
0.2101 | 26000 | 3.2873 | - | - | - |
0.2182 | 27000 | 3.2639 | - | - | - |
0.2263 | 28000 | 3.2323 | - | - | - |
0.2343 | 29000 | 3.2416 | - | - | - |
0.2424 | 30000 | 3.2117 | 3.1015 | 0.6895 | - |
0.2505 | 31000 | 3.1868 | - | - | - |
0.2586 | 32000 | 3.1576 | - | - | - |
0.2667 | 33000 | 3.1619 | - | - | - |
0.2747 | 34000 | 3.1445 | - | - | - |
0.2828 | 35000 | 3.1387 | - | - | - |
0.2909 | 36000 | 3.1159 | - | - | - |
0.2990 | 37000 | 3.09 | - | - | - |
0.3071 | 38000 | 3.0771 | - | - | - |
0.3152 | 39000 | 3.065 | - | - | - |
0.3232 | 40000 | 3.0589 | 2.9535 | 0.6885 | - |
0.3313 | 41000 | 3.0539 | - | - | - |
0.3394 | 42000 | 3.0211 | - | - | - |
0.3475 | 43000 | 3.0158 | - | - | - |
0.3556 | 44000 | 3.0172 | - | - | - |
0.3636 | 45000 | 2.9912 | - | - | - |
0.3717 | 46000 | 2.9776 | - | - | - |
0.3798 | 47000 | 2.9539 | - | - | - |
0.3879 | 48000 | 2.9753 | - | - | - |
0.3960 | 49000 | 2.9467 | - | - | - |
0.4040 | 50000 | 2.9429 | 2.8288 | 0.6830 | - |
0.4121 | 51000 | 2.9243 | - | - | - |
0.4202 | 52000 | 2.9273 | - | - | - |
0.4283 | 53000 | 2.9118 | - | - | - |
0.4364 | 54000 | 2.9068 | - | - | - |
0.4444 | 55000 | 2.8961 | - | - | - |
0.4525 | 56000 | 2.8621 | - | - | - |
0.4606 | 57000 | 2.8825 | - | - | - |
0.4687 | 58000 | 2.8466 | - | - | - |
0.4768 | 59000 | 2.868 | - | - | - |
0.4848 | 60000 | 2.8372 | 2.7335 | 0.6871 | - |
0.4929 | 61000 | 2.8322 | - | - | - |
0.5010 | 62000 | 2.8239 | - | - | - |
0.5091 | 63000 | 2.8148 | - | - | - |
0.5172 | 64000 | 2.8137 | - | - | - |
0.5253 | 65000 | 2.8043 | - | - | - |
0.5333 | 66000 | 2.7973 | - | - | - |
0.5414 | 67000 | 2.7739 | - | - | - |
0.5495 | 68000 | 2.7694 | - | - | - |
0.5576 | 69000 | 2.755 | - | - | - |
0.5657 | 70000 | 2.7846 | 2.6422 | 0.6773 | - |
0.5737 | 71000 | 2.7246 | - | - | - |
0.5818 | 72000 | 2.7438 | - | - | - |
0.5899 | 73000 | 2.7314 | - | - | - |
0.5980 | 74000 | 2.7213 | - | - | - |
0.6061 | 75000 | 2.7402 | - | - | - |
0.6141 | 76000 | 2.6955 | - | - | - |
0.6222 | 77000 | 2.7131 | - | - | - |
0.6303 | 78000 | 2.6951 | - | - | - |
0.6384 | 79000 | 2.6812 | - | - | - |
0.6465 | 80000 | 2.6844 | 2.5743 | 0.6827 | - |
0.6545 | 81000 | 2.665 | - | - | - |
0.6626 | 82000 | 2.6528 | - | - | - |
0.6707 | 83000 | 2.6819 | - | - | - |
0.6788 | 84000 | 2.6529 | - | - | - |
0.6869 | 85000 | 2.6665 | - | - | - |
0.6949 | 86000 | 2.6554 | - | - | - |
0.7030 | 87000 | 2.6299 | - | - | - |
0.7111 | 88000 | 2.659 | - | - | - |
0.7192 | 89000 | 2.632 | - | - | - |
0.7273 | 90000 | 2.6209 | 2.5051 | 0.6782 | - |
0.7354 | 91000 | 2.6023 | - | - | - |
0.7434 | 92000 | 2.6226 | - | - | - |
0.7515 | 93000 | 2.6057 | - | - | - |
0.7596 | 94000 | 2.601 | - | - | - |
0.7677 | 95000 | 2.5888 | - | - | - |
0.7758 | 96000 | 2.5811 | - | - | - |
0.7838 | 97000 | 2.565 | - | - | - |
0.7919 | 98000 | 2.5727 | - | - | - |
0.8 | 99000 | 2.5863 | - | - | - |
0.8081 | 100000 | 2.5534 | 2.4526 | 0.6799 | - |
0.8162 | 101000 | 2.5423 | - | - | - |
0.8242 | 102000 | 2.5655 | - | - | - |
0.8323 | 103000 | 2.5394 | - | - | - |
0.8404 | 104000 | 2.5217 | - | - | - |
0.8485 | 105000 | 2.5534 | - | - | - |
0.8566 | 106000 | 2.5264 | - | - | - |
0.8646 | 107000 | 2.5481 | - | - | - |
0.8727 | 108000 | 2.5508 | - | - | - |
0.8808 | 109000 | 2.5302 | - | - | - |
0.8889 | 110000 | 2.5223 | 2.4048 | 0.6771 | - |
0.8970 | 111000 | 2.5274 | - | - | - |
0.9051 | 112000 | 2.515 | - | - | - |
0.9131 | 113000 | 2.5088 | - | - | - |
0.9212 | 114000 | 2.5035 | - | - | - |
0.9293 | 115000 | 2.495 | - | - | - |
0.9374 | 116000 | 2.5066 | - | - | - |
0.9455 | 117000 | 2.4858 | - | - | - |
0.9535 | 118000 | 2.4803 | - | - | - |
0.9616 | 119000 | 2.506 | - | - | - |
0.9697 | 120000 | 2.4906 | 2.3738 | 0.6766 | - |
0.9778 | 121000 | 2.5027 | - | - | - |
0.9859 | 122000 | 2.4858 | - | - | - |
0.9939 | 123000 | 2.4928 | - | - | - |
-1 | -1 | - | - | - | 0.6322 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 1.432 kWh
- Carbon Emitted: 0.557 kg of CO2
- Hours Used: 4.403 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.0+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 2.20.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for tomaarsen/bert-base-uncased-stsb-tsdae
Base model
google-bert/bert-base-uncasedDataset used to train tomaarsen/bert-base-uncased-stsb-tsdae
Evaluation results
- Pearson Cosine on sts devself-reported0.673
- Spearman Cosine on sts devself-reported0.677
- Pearson Cosine on sts testself-reported0.642
- Spearman Cosine on sts testself-reported0.632