tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model
e0396b7 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:3012496
  - loss:MatryoshkaLoss
  - loss:CachedMultipleNegativesRankingLoss
base_model: google-bert/bert-base-uncased
widget:
  - source_sentence: are the sequels better than the prequels?
    sentences:
      - '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
      - >-
        The prequels are also not scared to take risks, making movies which are
        very different from the original trilogy. The sequel saga, on the other
        hand, are technically better made films, the acting is more consistent,
        the CGI is better and the writing is stronger, however it falls down in
        many other places.
      - >-
        While both public and private sectors use budgets as a key planning
        tool, public bodies balance budgets, while private sector firms use
        budgets to predict operating results. The public sector budget matches
        expenditures on mandated assets and services with receipts of public
        money such as taxes and fees.
  - source_sentence: are there bbqs at lake leschenaultia?
    sentences:
      - >-
        Vestavia Hills. The hummingbird, or, el zunzún as they are often called
        in the Caribbean, have such a nickname because of their quick movements.
        The ruby-throated hummingbird, the most commonly seen hummingbird in
        Alabama, is the inspiration for this restaurant.
      - >-
        Common causes of abdominal tenderness Abdominal tenderness is generally
        a sign of inflammation or other acute processes in one or more organs.
        The organs are located around the tender area. Acute processes mean
        sudden pressure caused by something. For example, twisted or blocked
        organs can cause point tenderness.
      - >-
        ​Located on 168 hectares of nature reserve, Lake Leschenaultia is the
        perfect spot for a family day out in the Perth Hills. The Lake offers
        canoeing, swimming, walk and cycle trails, as well as picnic, BBQ and
        camping facilities. ... There are picnic tables set amongst lovely
        Wandoo trees.
  - source_sentence: how much folic acid should you take prenatal?
    sentences:
      - >-
        Folic acid is a pregnancy superhero! Taking a prenatal vitamin with the
        recommended 400 micrograms (mcg) of folic acid before and during
        pregnancy can help prevent birth defects of your baby's brain and spinal
        cord. Take it every day and go ahead and have a bowl of fortified
        cereal, too.
      - >-
        ['You must be unemployed through no fault of your own, as defined by
        Virginia law.', 'You must have earned at least a minimum amount in wages
        before you were unemployed.', 'You must be able and available to work,
        and you must be actively seeking employment.']
      - >-
        Wallpaper is printed in batches of rolls. It is important to have the
        same batch number, to ensure colours match exactly. The batch number is
        usually located on the wallpaper label close to the pattern number.
        Remember batch numbers also apply to white wallpapers, as different
        batches can be different shades of white.
  - source_sentence: what is the difference between minerals and electrolytes?
    sentences:
      - >-
        North: Just head north of Junk Junction like so. South: Head below Lucky
        Landing. East: You're basically landing between Lonely Lodge and the
        Racetrack. West: The sign is west of Snobby Shores.
      - >-
        The fasting glucose tolerance test is the simplest and fastest way to
        measure blood glucose and diagnose diabetes. Fasting means that you have
        had nothing to eat or drink (except water) for 8 to 12 hours before the
        test.
      - >-
        In other words, the term “electrolyte” typically implies ionized
        minerals dissolved within water and beverages. Electrolytes are
        typically minerals, whereas minerals may or may not be electrolytes.
  - source_sentence: how can i download youtube videos with internet download manager?
    sentences:
      - >-
        ['Go to settings and then click on extensions (top left side in
        chrome).', 'Minimise your browser and open the location (folder) where
        IDM is installed. ... ', 'Find the file “IDMGCExt. ... ', 'Drag this
        file to your chrome browser and drop to install the IDM extension.']
      - >-
        Coca-Cola might rot your teeth and load your body with sugar and
        calories, but it's actually an effective and safe first line of
        treatment for some stomach blockages, researchers say.
      - >-
        To fix a disabled iPhone or iPad without iTunes, you have to erase your
        device. Click on the "Erase iPhone" option and confirm your selection.
        Wait for a while as the "Find My iPhone" feature will remotely erase
        your iOS device. Needless to say, it will also disable its lock.
datasets:
  - sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
co2_eq_emissions:
  emissions: 249.86917485332245
  energy_consumed: 0.6428296609055844
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 1.727
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: bert-base-uncased adapter finetuned on GooAQ pairs
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.3
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.42
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.48
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.54
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.16
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.11600000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.066
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.14833333333333332
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.21
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.25666666666666665
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2866666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2612531493211831
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3718333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.2163485410063536
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: cosine_accuracy@1
            value: 0.48
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.78
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.82
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.92
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.48
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4599999999999999
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.4159999999999999
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.39
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.04444293833661297
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.10924065240694858
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.14497857436843284
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.24069548747927993
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.45073427319400694
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6354682539682539
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3182747550673792
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: cosine_accuracy@1
            value: 0.6
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.84
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.96
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.6
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.28
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.184
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09799999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.59
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.8
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.8566666666666666
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9066666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.7556216606985078
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.719190476190476
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.701651515151515
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: cosine_accuracy@1
            value: 0.22
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.4
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.22
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.18
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09799999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.11441269841269841
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.21891269841269842
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.3109126984126984
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.40793650793650793
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2963633422018188
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.33072222222222225
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.23341351928423923
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: cosine_accuracy@1
            value: 0.64
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.74
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.82
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.84
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.64
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.31333333333333335
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.22399999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.11799999999999997
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.32
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.47
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.56
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.59
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5584295792789493
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7015
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.49543351785464007
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: cosine_accuracy@1
            value: 0.22
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.46
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.54
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.68
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.22
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15333333333333332
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10800000000000001
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.068
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.22
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.46
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.54
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.68
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.44155458168172074
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3666904761904761
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.38140126670451624
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: cosine_accuracy@1
            value: 0.32
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.44
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.46
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.5
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.32
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2866666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.244
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.17800000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.022867372385014545
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.051610132551984836
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.061993511339545566
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.07344138386002937
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.22405550472948219
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3782222222222222
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.08778657539162772
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: cosine_accuracy@1
            value: 0.4
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.54
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.62
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.4
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.18
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.124
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07200000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.4
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.53
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.59
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.67
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.5271006159134835
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4858809523809523
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4878346435046129
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.84
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.98
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.98
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.84
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.38666666666666655
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.23999999999999994
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.12999999999999998
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.7573333333333333
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9286666666666668
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9359999999999999
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9793333333333334
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9154478750600358
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9053333333333333
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8889771382049948
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: cosine_accuracy@1
            value: 0.3
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.36
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.54
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.68
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19200000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.142
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.06466666666666666
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.12466666666666669
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.19666666666666666
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2906666666666667
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.2646043570275534
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.3836031746031746
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.20582501612453505
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: cosine_accuracy@1
            value: 0.16
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.52
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.72
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.8
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.16
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.17333333333333337
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14400000000000002
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.08
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.16
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.52
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.72
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.8
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.47137188069353025
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.36633333333333323
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.3750999024240443
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: cosine_accuracy@1
            value: 0.38
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.56
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.64
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.38
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.07800000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.345
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.525
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.615
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.68
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.521095291928473
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4848333333333332
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4707221516167083
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: cosine_accuracy@1
            value: 0.3673469387755102
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.8571428571428571
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9387755102040817
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 1
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3673469387755102
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.4965986394557823
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.4489795918367347
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.39387755102040817
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.03066633506656198
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.1123508290418132
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.1616156991422983
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.2674040762687923
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.42905651691216934
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6237204405571752
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.32876348596122706
            name: Cosine Map@100
      - task:
          type: nano-beir
          name: Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: cosine_accuracy@1
            value: 0.40210361067503925
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.6074725274725276
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.6891365777080062
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.7630769230769231
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.40210361067503925
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.26691784406070124
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.2093061224489796
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.14706750392464676
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.247517129041094
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.38926520351898297
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.4577308064048442
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.5286777529906109
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.47051450989545496
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.519487042436022
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.399348617561261
            name: Cosine Map@100

bert-base-uncased adapter finetuned on GooAQ pairs

This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-bert/bert-base-uncased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq-peft")
# Run inference
sentences = [
    'how can i download youtube videos with internet download manager?',
    "['Go to settings and then click on extensions (top left side in chrome).', 'Minimise your browser and open the location (folder) where IDM is installed. ... ', 'Find the file “IDMGCExt. ... ', 'Drag this file to your chrome browser and drop to install the IDM extension.']",
    "Coca-Cola might rot your teeth and load your body with sugar and calories, but it's actually an effective and safe first line of treatment for some stomach blockages, researchers say.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with InformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
cosine_accuracy@1 0.3 0.48 0.6 0.22 0.64 0.22 0.32 0.4 0.84 0.3 0.16 0.38 0.3673
cosine_accuracy@3 0.42 0.78 0.84 0.4 0.74 0.46 0.44 0.54 0.98 0.36 0.52 0.56 0.8571
cosine_accuracy@5 0.48 0.82 0.9 0.5 0.82 0.54 0.46 0.62 0.98 0.54 0.72 0.64 0.9388
cosine_accuracy@10 0.54 0.92 0.96 0.6 0.84 0.68 0.5 0.7 1.0 0.68 0.8 0.7 1.0
cosine_precision@1 0.3 0.48 0.6 0.22 0.64 0.22 0.32 0.4 0.84 0.3 0.16 0.38 0.3673
cosine_precision@3 0.16 0.46 0.28 0.18 0.3133 0.1533 0.2867 0.18 0.3867 0.2 0.1733 0.2 0.4966
cosine_precision@5 0.116 0.416 0.184 0.14 0.224 0.108 0.244 0.124 0.24 0.192 0.144 0.14 0.449
cosine_precision@10 0.066 0.39 0.098 0.098 0.118 0.068 0.178 0.072 0.13 0.142 0.08 0.078 0.3939
cosine_recall@1 0.1483 0.0444 0.59 0.1144 0.32 0.22 0.0229 0.4 0.7573 0.0647 0.16 0.345 0.0307
cosine_recall@3 0.21 0.1092 0.8 0.2189 0.47 0.46 0.0516 0.53 0.9287 0.1247 0.52 0.525 0.1124
cosine_recall@5 0.2567 0.145 0.8567 0.3109 0.56 0.54 0.062 0.59 0.936 0.1967 0.72 0.615 0.1616
cosine_recall@10 0.2867 0.2407 0.9067 0.4079 0.59 0.68 0.0734 0.67 0.9793 0.2907 0.8 0.68 0.2674
cosine_ndcg@10 0.2613 0.4507 0.7556 0.2964 0.5584 0.4416 0.2241 0.5271 0.9154 0.2646 0.4714 0.5211 0.4291
cosine_mrr@10 0.3718 0.6355 0.7192 0.3307 0.7015 0.3667 0.3782 0.4859 0.9053 0.3836 0.3663 0.4848 0.6237
cosine_map@100 0.2163 0.3183 0.7017 0.2334 0.4954 0.3814 0.0878 0.4878 0.889 0.2058 0.3751 0.4707 0.3288

Nano BEIR

Metric Value
cosine_accuracy@1 0.4021
cosine_accuracy@3 0.6075
cosine_accuracy@5 0.6891
cosine_accuracy@10 0.7631
cosine_precision@1 0.4021
cosine_precision@3 0.2669
cosine_precision@5 0.2093
cosine_precision@10 0.1471
cosine_recall@1 0.2475
cosine_recall@3 0.3893
cosine_recall@5 0.4577
cosine_recall@10 0.5287
cosine_ndcg@10 0.4705
cosine_mrr@10 0.5195
cosine_map@100 0.3993

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,012,496 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.86 tokens
    • max: 21 tokens
    • min: 14 tokens
    • mean: 60.48 tokens
    • max: 138 tokens
  • Samples:
    question answer
    what is the difference between broilers and layers? An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.
    what is the difference between chronological order and spatial order? As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.
    is kamagra same as viagra? Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "CachedMultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 3,012,496 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.88 tokens
    • max: 22 tokens
    • min: 14 tokens
    • mean: 61.03 tokens
    • max: 127 tokens
  • Samples:
    question answer
    how do i program my directv remote with my tv? ['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
    are rodrigues fruit bats nocturnal? Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
    why does your heart rate increase during exercise bbc bitesize? During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "CachedMultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64,
            32
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 12
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 12
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoClimateFEVER_cosine_ndcg@10 NanoDBPedia_cosine_ndcg@10 NanoFEVER_cosine_ndcg@10 NanoFiQA2018_cosine_ndcg@10 NanoHotpotQA_cosine_ndcg@10 NanoMSMARCO_cosine_ndcg@10 NanoNFCorpus_cosine_ndcg@10 NanoNQ_cosine_ndcg@10 NanoQuoraRetrieval_cosine_ndcg@10 NanoSCIDOCS_cosine_ndcg@10 NanoArguAna_cosine_ndcg@10 NanoSciFact_cosine_ndcg@10 NanoTouche2020_cosine_ndcg@10 NanoBEIR_mean_cosine_ndcg@10
0 0 - - 0.1046 0.2182 0.1573 0.0575 0.2597 0.1602 0.0521 0.0493 0.7310 0.1320 0.2309 0.1240 0.0970 0.1826
0.0010 1 28.4479 - - - - - - - - - - - - - - -
0.0256 25 27.0904 - - - - - - - - - - - - - - -
0.0512 50 19.016 - - - - - - - - - - - - - - -
0.0768 75 12.2306 - - - - - - - - - - - - - - -
0.1024 100 9.0613 - - - - - - - - - - - - - - -
0.1279 125 7.393 3.7497 0.2787 0.4840 0.7029 0.2589 0.5208 0.4094 0.2117 0.4526 0.9042 0.2503 0.5280 0.4922 0.4132 0.4544
0.1535 150 6.6613 - - - - - - - - - - - - - - -
0.1791 175 6.1911 - - - - - - - - - - - - - - -
0.2047 200 5.9305 - - - - - - - - - - - - - - -
0.2303 225 5.6825 - - - - - - - - - - - - - - -
0.2559 250 5.5326 2.8771 0.2867 0.4619 0.7333 0.2835 0.5549 0.4056 0.2281 0.4883 0.9137 0.2555 0.5114 0.5220 0.4298 0.4673
0.2815 275 5.1671 - - - - - - - - - - - - - - -
0.3071 300 5.2006 - - - - - - - - - - - - - - -
0.3327 325 5.0447 - - - - - - - - - - - - - - -
0.3582 350 4.9647 - - - - - - - - - - - - - - -
0.3838 375 4.8521 2.5709 0.2881 0.4577 0.7438 0.2909 0.5712 0.4093 0.2273 0.5141 0.9008 0.2668 0.5117 0.5253 0.4331 0.4723
0.4094 400 4.8423 - - - - - - - - - - - - - - -
0.4350 425 4.7472 - - - - - - - - - - - - - - -
0.4606 450 4.6527 - - - - - - - - - - - - - - -
0.4862 475 4.61 - - - - - - - - - - - - - - -
0.5118 500 4.5451 2.4136 0.2786 0.4464 0.7485 0.2961 0.5638 0.4368 0.2269 0.5125 0.8998 0.2680 0.4938 0.5341 0.4383 0.4726
0.5374 525 4.5357 - - - - - - - - - - - - - - -
0.5629 550 4.481 - - - - - - - - - - - - - - -
0.5885 575 4.4669 - - - - - - - - - - - - - - -
0.6141 600 4.3886 - - - - - - - - - - - - - - -
0.6397 625 4.2929 2.3091 0.2639 0.4475 0.7521 0.3095 0.5619 0.4448 0.2244 0.5178 0.9102 0.2655 0.4809 0.5253 0.4351 0.4722
0.6653 650 4.2558 - - - - - - - - - - - - - - -
0.6909 675 4.3228 - - - - - - - - - - - - - - -
0.7165 700 4.2496 - - - - - - - - - - - - - - -
0.7421 725 4.2304 - - - - - - - - - - - - - - -
0.7677 750 4.224 2.2440 0.2628 0.4514 0.7387 0.3028 0.5522 0.4313 0.2253 0.5266 0.9211 0.2675 0.4929 0.5232 0.4351 0.4716
0.7932 775 4.2821 - - - - - - - - - - - - - - -
0.8188 800 4.2686 - - - - - - - - - - - - - - -
0.8444 825 4.1657 - - - - - - - - - - - - - - -
0.8700 850 4.2297 - - - - - - - - - - - - - - -
0.8956 875 4.1709 2.2142 0.2685 0.4520 0.7569 0.2930 0.5625 0.4486 0.2229 0.5280 0.9153 0.2601 0.4862 0.5199 0.4334 0.4729
0.9212 900 4.0771 - - - - - - - - - - - - - - -
0.9468 925 4.1492 - - - - - - - - - - - - - - -
0.9724 950 4.2074 - - - - - - - - - - - - - - -
0.9980 975 4.0993 - - - - - - - - - - - - - - -
1.0 977 - - 0.2613 0.4507 0.7556 0.2964 0.5584 0.4416 0.2241 0.5271 0.9154 0.2646 0.4714 0.5211 0.4291 0.4705

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.643 kWh
  • Carbon Emitted: 0.250 kg of CO2
  • Hours Used: 1.727 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 3.4.0.dev0
  • Transformers: 4.46.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.35.0.dev0
  • Datasets: 2.20.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}