metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3012496
- loss:MatryoshkaLoss
- loss:CachedMultipleNegativesRankingLoss
base_model: google-bert/bert-base-uncased
widget:
- source_sentence: are the sequels better than the prequels?
sentences:
- '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
- >-
The prequels are also not scared to take risks, making movies which are
very different from the original trilogy. The sequel saga, on the other
hand, are technically better made films, the acting is more consistent,
the CGI is better and the writing is stronger, however it falls down in
many other places.
- >-
While both public and private sectors use budgets as a key planning
tool, public bodies balance budgets, while private sector firms use
budgets to predict operating results. The public sector budget matches
expenditures on mandated assets and services with receipts of public
money such as taxes and fees.
- source_sentence: are there bbqs at lake leschenaultia?
sentences:
- >-
Vestavia Hills. The hummingbird, or, el zunzún as they are often called
in the Caribbean, have such a nickname because of their quick movements.
The ruby-throated hummingbird, the most commonly seen hummingbird in
Alabama, is the inspiration for this restaurant.
- >-
Common causes of abdominal tenderness Abdominal tenderness is generally
a sign of inflammation or other acute processes in one or more organs.
The organs are located around the tender area. Acute processes mean
sudden pressure caused by something. For example, twisted or blocked
organs can cause point tenderness.
- >-
Located on 168 hectares of nature reserve, Lake Leschenaultia is the
perfect spot for a family day out in the Perth Hills. The Lake offers
canoeing, swimming, walk and cycle trails, as well as picnic, BBQ and
camping facilities. ... There are picnic tables set amongst lovely
Wandoo trees.
- source_sentence: how much folic acid should you take prenatal?
sentences:
- >-
Folic acid is a pregnancy superhero! Taking a prenatal vitamin with the
recommended 400 micrograms (mcg) of folic acid before and during
pregnancy can help prevent birth defects of your baby's brain and spinal
cord. Take it every day and go ahead and have a bowl of fortified
cereal, too.
- >-
['You must be unemployed through no fault of your own, as defined by
Virginia law.', 'You must have earned at least a minimum amount in wages
before you were unemployed.', 'You must be able and available to work,
and you must be actively seeking employment.']
- >-
Wallpaper is printed in batches of rolls. It is important to have the
same batch number, to ensure colours match exactly. The batch number is
usually located on the wallpaper label close to the pattern number.
Remember batch numbers also apply to white wallpapers, as different
batches can be different shades of white.
- source_sentence: what is the difference between minerals and electrolytes?
sentences:
- >-
North: Just head north of Junk Junction like so. South: Head below Lucky
Landing. East: You're basically landing between Lonely Lodge and the
Racetrack. West: The sign is west of Snobby Shores.
- >-
The fasting glucose tolerance test is the simplest and fastest way to
measure blood glucose and diagnose diabetes. Fasting means that you have
had nothing to eat or drink (except water) for 8 to 12 hours before the
test.
- >-
In other words, the term “electrolyte” typically implies ionized
minerals dissolved within water and beverages. Electrolytes are
typically minerals, whereas minerals may or may not be electrolytes.
- source_sentence: how can i download youtube videos with internet download manager?
sentences:
- >-
['Go to settings and then click on extensions (top left side in
chrome).', 'Minimise your browser and open the location (folder) where
IDM is installed. ... ', 'Find the file “IDMGCExt. ... ', 'Drag this
file to your chrome browser and drop to install the IDM extension.']
- >-
Coca-Cola might rot your teeth and load your body with sugar and
calories, but it's actually an effective and safe first line of
treatment for some stomach blockages, researchers say.
- >-
To fix a disabled iPhone or iPad without iTunes, you have to erase your
device. Click on the "Erase iPhone" option and confirm your selection.
Wait for a while as the "Find My iPhone" feature will remotely erase
your iOS device. Needless to say, it will also disable its lock.
datasets:
- sentence-transformers/gooaq
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
co2_eq_emissions:
emissions: 249.86917485332245
energy_consumed: 0.6428296609055844
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 1.727
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: bert-base-uncased adapter finetuned on GooAQ pairs
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: cosine_accuracy@1
value: 0.3
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.48
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.54
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.16
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11600000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.066
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.14833333333333332
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.25666666666666665
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2866666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2612531493211831
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3718333333333333
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2163485410063536
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: cosine_accuracy@1
value: 0.48
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.78
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.82
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.92
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.48
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4599999999999999
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4159999999999999
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.39
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.04444293833661297
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.10924065240694858
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.14497857436843284
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.24069548747927993
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.45073427319400694
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6354682539682539
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3182747550673792
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: cosine_accuracy@1
value: 0.6
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.84
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.96
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.184
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09799999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.59
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8566666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9066666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7556216606985078
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.719190476190476
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.701651515151515
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: cosine_accuracy@1
value: 0.22
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.22
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09799999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.11441269841269841
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.21891269841269842
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3109126984126984
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.40793650793650793
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2963633422018188
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.33072222222222225
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.23341351928423923
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: cosine_accuracy@1
value: 0.64
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.74
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.82
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.84
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.64
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31333333333333335
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.22399999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.11799999999999997
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.32
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.47
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.56
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.59
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5584295792789493
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7015
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.49543351785464007
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.22
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.46
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.54
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.22
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15333333333333332
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10800000000000001
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.068
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.22
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.46
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.54
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.44155458168172074
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3666904761904761
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.38140126670451624
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: cosine_accuracy@1
value: 0.32
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.46
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2866666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.244
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.17800000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.022867372385014545
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.051610132551984836
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.061993511339545566
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.07344138386002937
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.22405550472948219
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3782222222222222
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.08778657539162772
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.4
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.54
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.62
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.124
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07200000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.53
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.59
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.67
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5271006159134835
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4858809523809523
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4878346435046129
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: cosine_accuracy@1
value: 0.84
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.98
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.98
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.84
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.38666666666666655
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.23999999999999994
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.12999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7573333333333333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9286666666666668
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9359999999999999
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9793333333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9154478750600358
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9053333333333333
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8889771382049948
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: cosine_accuracy@1
value: 0.3
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.54
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.68
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19200000000000003
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.142
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.06466666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.12466666666666669
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.19666666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2906666666666667
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2646043570275534
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3836031746031746
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.20582501612453505
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: cosine_accuracy@1
value: 0.16
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.52
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.72
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.16
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17333333333333337
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14400000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.16
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.52
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.72
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47137188069353025
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.36633333333333323
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3750999024240443
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: cosine_accuracy@1
value: 0.38
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.56
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.64
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.38
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.14
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07800000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.345
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.525
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.615
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.68
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.521095291928473
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4848333333333332
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4707221516167083
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: cosine_accuracy@1
value: 0.3673469387755102
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8571428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9387755102040817
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3673469387755102
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4965986394557823
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.4489795918367347
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.39387755102040817
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03066633506656198
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.1123508290418132
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.1616156991422983
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.2674040762687923
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.42905651691216934
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6237204405571752
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.32876348596122706
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.40210361067503925
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.6074725274725276
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6891365777080062
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7630769230769231
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.40210361067503925
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26691784406070124
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.2093061224489796
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14706750392464676
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.247517129041094
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.38926520351898297
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.4577308064048442
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5286777529906109
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47051450989545496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.519487042436022
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.399348617561261
name: Cosine Map@100
bert-base-uncased adapter finetuned on GooAQ pairs
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq-peft")
# Run inference
sentences = [
'how can i download youtube videos with internet download manager?',
"['Go to settings and then click on extensions (top left side in chrome).', 'Minimise your browser and open the location (folder) where IDM is installed. ... ', 'Find the file “IDMGCExt. ... ', 'Drag this file to your chrome browser and drop to install the IDM extension.']",
"Coca-Cola might rot your teeth and load your body with sugar and calories, but it's actually an effective and safe first line of treatment for some stomach blockages, researchers say.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
InformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cosine_accuracy@1 | 0.3 | 0.48 | 0.6 | 0.22 | 0.64 | 0.22 | 0.32 | 0.4 | 0.84 | 0.3 | 0.16 | 0.38 | 0.3673 |
cosine_accuracy@3 | 0.42 | 0.78 | 0.84 | 0.4 | 0.74 | 0.46 | 0.44 | 0.54 | 0.98 | 0.36 | 0.52 | 0.56 | 0.8571 |
cosine_accuracy@5 | 0.48 | 0.82 | 0.9 | 0.5 | 0.82 | 0.54 | 0.46 | 0.62 | 0.98 | 0.54 | 0.72 | 0.64 | 0.9388 |
cosine_accuracy@10 | 0.54 | 0.92 | 0.96 | 0.6 | 0.84 | 0.68 | 0.5 | 0.7 | 1.0 | 0.68 | 0.8 | 0.7 | 1.0 |
cosine_precision@1 | 0.3 | 0.48 | 0.6 | 0.22 | 0.64 | 0.22 | 0.32 | 0.4 | 0.84 | 0.3 | 0.16 | 0.38 | 0.3673 |
cosine_precision@3 | 0.16 | 0.46 | 0.28 | 0.18 | 0.3133 | 0.1533 | 0.2867 | 0.18 | 0.3867 | 0.2 | 0.1733 | 0.2 | 0.4966 |
cosine_precision@5 | 0.116 | 0.416 | 0.184 | 0.14 | 0.224 | 0.108 | 0.244 | 0.124 | 0.24 | 0.192 | 0.144 | 0.14 | 0.449 |
cosine_precision@10 | 0.066 | 0.39 | 0.098 | 0.098 | 0.118 | 0.068 | 0.178 | 0.072 | 0.13 | 0.142 | 0.08 | 0.078 | 0.3939 |
cosine_recall@1 | 0.1483 | 0.0444 | 0.59 | 0.1144 | 0.32 | 0.22 | 0.0229 | 0.4 | 0.7573 | 0.0647 | 0.16 | 0.345 | 0.0307 |
cosine_recall@3 | 0.21 | 0.1092 | 0.8 | 0.2189 | 0.47 | 0.46 | 0.0516 | 0.53 | 0.9287 | 0.1247 | 0.52 | 0.525 | 0.1124 |
cosine_recall@5 | 0.2567 | 0.145 | 0.8567 | 0.3109 | 0.56 | 0.54 | 0.062 | 0.59 | 0.936 | 0.1967 | 0.72 | 0.615 | 0.1616 |
cosine_recall@10 | 0.2867 | 0.2407 | 0.9067 | 0.4079 | 0.59 | 0.68 | 0.0734 | 0.67 | 0.9793 | 0.2907 | 0.8 | 0.68 | 0.2674 |
cosine_ndcg@10 | 0.2613 | 0.4507 | 0.7556 | 0.2964 | 0.5584 | 0.4416 | 0.2241 | 0.5271 | 0.9154 | 0.2646 | 0.4714 | 0.5211 | 0.4291 |
cosine_mrr@10 | 0.3718 | 0.6355 | 0.7192 | 0.3307 | 0.7015 | 0.3667 | 0.3782 | 0.4859 | 0.9053 | 0.3836 | 0.3663 | 0.4848 | 0.6237 |
cosine_map@100 | 0.2163 | 0.3183 | 0.7017 | 0.2334 | 0.4954 | 0.3814 | 0.0878 | 0.4878 | 0.889 | 0.2058 | 0.3751 | 0.4707 | 0.3288 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4021 |
cosine_accuracy@3 | 0.6075 |
cosine_accuracy@5 | 0.6891 |
cosine_accuracy@10 | 0.7631 |
cosine_precision@1 | 0.4021 |
cosine_precision@3 | 0.2669 |
cosine_precision@5 | 0.2093 |
cosine_precision@10 | 0.1471 |
cosine_recall@1 | 0.2475 |
cosine_recall@3 | 0.3893 |
cosine_recall@5 | 0.4577 |
cosine_recall@10 | 0.5287 |
cosine_ndcg@10 | 0.4705 |
cosine_mrr@10 | 0.5195 |
cosine_map@100 | 0.3993 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,012,496 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.86 tokens
- max: 21 tokens
- min: 14 tokens
- mean: 60.48 tokens
- max: 138 tokens
- Samples:
question answer what is the difference between broilers and layers?
An egg laying poultry is called egger or layer whereas broilers are reared for obtaining meat. So a layer should be able to produce more number of large sized eggs, without growing too much. On the other hand, a broiler should yield more meat and hence should be able to grow well.
what is the difference between chronological order and spatial order?
As a writer, you should always remember that unlike chronological order and the other organizational methods for data, spatial order does not take into account the time. Spatial order is primarily focused on the location. All it does is take into account the location of objects and not the time.
is kamagra same as viagra?
Kamagra is thought to contain the same active ingredient as Viagra, sildenafil citrate. In theory, it should work in much the same way as Viagra, taking about 45 minutes to take effect, and lasting for around 4-6 hours. However, this will vary from person to person.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CachedMultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,012,496 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.88 tokens
- max: 22 tokens
- min: 14 tokens
- mean: 61.03 tokens
- max: 127 tokens
- Samples:
question answer how do i program my directv remote with my tv?
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']
are rodrigues fruit bats nocturnal?
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.
why does your heart rate increase during exercise bbc bitesize?
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "CachedMultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoClimateFEVER_cosine_ndcg@10 | NanoDBPedia_cosine_ndcg@10 | NanoFEVER_cosine_ndcg@10 | NanoFiQA2018_cosine_ndcg@10 | NanoHotpotQA_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoNFCorpus_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoQuoraRetrieval_cosine_ndcg@10 | NanoSCIDOCS_cosine_ndcg@10 | NanoArguAna_cosine_ndcg@10 | NanoSciFact_cosine_ndcg@10 | NanoTouche2020_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | - | - | 0.1046 | 0.2182 | 0.1573 | 0.0575 | 0.2597 | 0.1602 | 0.0521 | 0.0493 | 0.7310 | 0.1320 | 0.2309 | 0.1240 | 0.0970 | 0.1826 |
0.0010 | 1 | 28.4479 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0256 | 25 | 27.0904 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0512 | 50 | 19.016 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0768 | 75 | 12.2306 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1024 | 100 | 9.0613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1279 | 125 | 7.393 | 3.7497 | 0.2787 | 0.4840 | 0.7029 | 0.2589 | 0.5208 | 0.4094 | 0.2117 | 0.4526 | 0.9042 | 0.2503 | 0.5280 | 0.4922 | 0.4132 | 0.4544 |
0.1535 | 150 | 6.6613 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1791 | 175 | 6.1911 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2047 | 200 | 5.9305 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2303 | 225 | 5.6825 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2559 | 250 | 5.5326 | 2.8771 | 0.2867 | 0.4619 | 0.7333 | 0.2835 | 0.5549 | 0.4056 | 0.2281 | 0.4883 | 0.9137 | 0.2555 | 0.5114 | 0.5220 | 0.4298 | 0.4673 |
0.2815 | 275 | 5.1671 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3071 | 300 | 5.2006 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3327 | 325 | 5.0447 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3582 | 350 | 4.9647 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3838 | 375 | 4.8521 | 2.5709 | 0.2881 | 0.4577 | 0.7438 | 0.2909 | 0.5712 | 0.4093 | 0.2273 | 0.5141 | 0.9008 | 0.2668 | 0.5117 | 0.5253 | 0.4331 | 0.4723 |
0.4094 | 400 | 4.8423 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4350 | 425 | 4.7472 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4606 | 450 | 4.6527 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4862 | 475 | 4.61 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5118 | 500 | 4.5451 | 2.4136 | 0.2786 | 0.4464 | 0.7485 | 0.2961 | 0.5638 | 0.4368 | 0.2269 | 0.5125 | 0.8998 | 0.2680 | 0.4938 | 0.5341 | 0.4383 | 0.4726 |
0.5374 | 525 | 4.5357 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5629 | 550 | 4.481 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5885 | 575 | 4.4669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6141 | 600 | 4.3886 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6397 | 625 | 4.2929 | 2.3091 | 0.2639 | 0.4475 | 0.7521 | 0.3095 | 0.5619 | 0.4448 | 0.2244 | 0.5178 | 0.9102 | 0.2655 | 0.4809 | 0.5253 | 0.4351 | 0.4722 |
0.6653 | 650 | 4.2558 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6909 | 675 | 4.3228 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7165 | 700 | 4.2496 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7421 | 725 | 4.2304 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7677 | 750 | 4.224 | 2.2440 | 0.2628 | 0.4514 | 0.7387 | 0.3028 | 0.5522 | 0.4313 | 0.2253 | 0.5266 | 0.9211 | 0.2675 | 0.4929 | 0.5232 | 0.4351 | 0.4716 |
0.7932 | 775 | 4.2821 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8188 | 800 | 4.2686 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8444 | 825 | 4.1657 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8700 | 850 | 4.2297 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8956 | 875 | 4.1709 | 2.2142 | 0.2685 | 0.4520 | 0.7569 | 0.2930 | 0.5625 | 0.4486 | 0.2229 | 0.5280 | 0.9153 | 0.2601 | 0.4862 | 0.5199 | 0.4334 | 0.4729 |
0.9212 | 900 | 4.0771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9468 | 925 | 4.1492 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9724 | 950 | 4.2074 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9980 | 975 | 4.0993 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0 | 977 | - | - | 0.2613 | 0.4507 | 0.7556 | 0.2964 | 0.5584 | 0.4416 | 0.2241 | 0.5271 | 0.9154 | 0.2646 | 0.4714 | 0.5211 | 0.4291 | 0.4705 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.643 kWh
- Carbon Emitted: 0.250 kg of CO2
- Hours Used: 1.727 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.4.0.dev0
- Transformers: 4.46.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.35.0.dev0
- Datasets: 2.20.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}