File size: 14,071 Bytes
ad6936c
 
 
 
 
 
 
 
 
 
 
 
9afb3ac
ad6936c
 
 
 
 
9afb3ac
ad6936c
 
 
4a3fe82
9afb3ac
ad6936c
9afb3ac
ad6936c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9d35bb
 
 
9afb3ac
31b35d3
 
c9d35bb
31b35d3
ad6936c
9afb3ac
ad6936c
9afb3ac
 
 
 
 
31b35d3
 
c9d35bb
31b35d3
 
 
 
 
 
 
 
 
 
c9d35bb
31b35d3
 
 
 
 
 
 
 
 
 
c9d35bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad6936c
 
 
9afb3ac
ad6936c
fe3d020
31b35d3
ad6936c
9afb3ac
 
 
 
31b35d3
 
 
ad6936c
 
 
 
 
 
 
 
 
 
9afb3ac
ad6936c
 
 
 
 
bde1673
ad6936c
 
b094bc6
9afb3ac
 
b094bc6
 
 
 
 
 
bde1673
 
b094bc6
ad6936c
9afb3ac
 
ad6936c
 
 
 
 
9afb3ac
ad6936c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afb3ac
ad6936c
 
 
 
4a3fe82
ad6936c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b094bc6
 
3cc4c12
 
 
b094bc6
3cc4c12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b094bc6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---

# Swallow

Our Swallow model has undergone continual pre-training from the [Llama 2 family](https://huggingface.co./meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT). 
Links to other models can be found in the index.

# Model Release Updates

We are excited to share the release schedule for our latest models:
- **April 26, 2024**: Released version 0.1 of our enhanced instruction-tuned models: [Swallow-7b-instruct-v0.1](https://huggingface.co./tokyotech-llm/Swallow-7b-instruct-v0.1), [Swallow-13b-instruct-v0.1](https://huggingface.co./tokyotech-llm/Swallow-13b-instruct-v0.1), and [Swallow-70b-instruct-v0.1](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-v0.1) as preview versions.
- **March 2, 2024**: Released the [Swallow-7b-plus-hf](https://huggingface.co./tokyotech-llm/Swallow-7b-plus-hf), a model trained with approximately twice as many Japanese tokens as [Swallow-7b-hf](https://huggingface.co./tokyotech-llm/Swallow-7b-hf).
- **February 4, 2024**: Released the [Swallow-13b-NVE-hf](https://huggingface.co./tokyotech-llm/Swallow-13b-NVE-hf).
- **January 26, 2024**: Released the [Swallow-7b-NVE-hf](https://huggingface.co./tokyotech-llm/Swallow-7b-NVE-hf), [Swallow-7b-NVE-instruct-hf](https://huggingface.co./tokyotech-llm/Swallow-7b-NVE-instruct-hf), [Swallow-70b-NVE-hf](https://huggingface.co./tokyotech-llm/Swallow-70b-NVE-hf), and [Swallow-70b-NVE-instruct-hf](https://huggingface.co./tokyotech-llm/Swallow-70b-NVE-instruct-hf)
- **December 19, 2023**: Released the [Swallow-7b-hf](https://huggingface.co./tokyotech-llm/Swallow-7b-hf), [Swallow-7b-instruct-hf](https://huggingface.co./tokyotech-llm/Swallow-7b-instruct-hf), [Swallow-13b-hf](https://huggingface.co./tokyotech-llm/Swallow-13b-hf), [Swallow-13b-instruct-hf](https://huggingface.co./tokyotech-llm/Swallow-13b-instruct-hf), [Swallow-70b-hf](https://huggingface.co./tokyotech-llm/Swallow-70b-hf), and [Swallow-70b-instruct-hf](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-hf).

## Swallow Model Index
|Model|Swallow-hf|Swallow-instruct-hf|Swallow-instruct-v0.1|
|---|---|---|---|
|7B| [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-instruct-hf)|[Link](https://huggingface.co./tokyotech-llm/Swallow-7b-instruct-v1.0)|
|7B-Plus| [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-plus-hf) | N/A | N/A |
|13B| [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-instruct-hf)| [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-instruct-v1.0)|
|70B| [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-hf)| [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-instruct-v1.0)|

## Swallow Model Index NVE (No Vocabulary Expansion)
|Model|Swallow-NVE-hf|Swallow-NVE-instruct-hf|
|---|---|---|
|7B| [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-NVE-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-7b-NVE-instruct-hf)|
|13B| [Link](https://huggingface.co./tokyotech-llm/Swallow-13b-NVE-hf) | N/A |
|70B| [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-NVE-hf) | [Link](https://huggingface.co./tokyotech-llm/Swallow-70b-NVE-instruct-hf)|

![logo](./logo.png)

This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).

## Model Details

* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture. 
* **Language(s)**: Japanese English
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
* **Contact**: swallow[at]nlp.c.titech.ac.jp 

## Instruct Model Performance

### MT-Bench JA


#### Comparison to the past version

* NOTE that the models with the `v0.1` suffix are newer versions compared to their original counterparts with the `hf`.
* We report overall (i.e., average over scores of the first and second turns), first, and second turn scores.

##### Overall


|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3435|0.4450|0.4720|0.1853|0.1920|0.2204|0.3015|0.4594|0.4720|
| Swallow-7b-instruct-hf |0.1833|0.2205|0.1975|0.1593|0.1045|0.1282|0.2672|0.1908|0.1980|
| Swallow-13b-instruct-v0.1 |0.3669|0.4816|0.5562|0.2769|0.1020|0.1505|0.4179|0.4347|0.5150|
| Swallow-13b-instruct-hf |0.2004|0.1932|0.2552|0.1507|0.1184|0.1285|0.2641|0.2434|0.2500|
| Swallow-70b-instruct-v0.1 |0.4513|0.4822|0.5353|0.3497|0.3492|0.2668|0.5553|0.4955|0.5767|
| Swallow-70b-instruct-hf |0.3259|0.2925|0.4283|0.3447|0.1562|0.1856|0.5634|0.3315|0.3071|

##### First Turn

|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3829|0.4960|0.4800|0.2220|0.2820|0.2164|0.3220|0.5440|0.4980|
| Swallow-7b-instruct-hf |0.2216|0.2830|0.2150|0.1590|0.1080|0.1470|0.3542|0.2450|0.2650|
| Swallow-13b-instruct-v0.1 |0.3948|0.5400|0.5220|0.3020|0.1040|0.1760|0.5040|0.5180|0.4920|
| Swallow-13b-instruct-hf |0.2304|0.2460|0.2640|0.1610|0.1360|0.1330|0.3070|0.3010|0.2950|
| Swallow-70b-instruct-v0.1 |0.4849|0.5720|0.5020|0.4780|0.3680|0.2467|0.5400|0.5720|0.5960|
| Swallow-70b-instruct-hf |0.3631|0.3420|0.4007|0.4220|0.1580|0.2044|0.6120|0.4280|0.3360|

##### Second Turn

|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3059|0.3940|0.4640|0.1441|0.1000|0.2253|0.2811|0.3724|0.4449|
| Swallow-7b-instruct-hf |0.1432|0.1567|0.1798|0.1603|0.1010|0.1085|0.1767|0.1343|0.1295|
| Swallow-13b-instruct-v0.1 |0.3353|0.4213|0.5911|0.2516|0.1000|0.1244|0.3194|0.3473|0.5394|
| Swallow-13b-instruct-hf |0.1692|0.1364|0.2453|0.1401|0.1000|0.1237|0.2199|0.1850|0.2050|
| Swallow-70b-instruct-v0.1 |0.4179|0.3913|0.5689|0.2184|0.3280|0.2884|0.5711|0.4171|0.5562|
| Swallow-70b-instruct-hf |0.2872|0.2398|0.4564|0.2647|0.1540|0.1676|0.5118|0.2311|0.2762|

#### Comparison to the existing models

We only provide the overall score in this section.

##### 7B models

|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-7b-instruct-v0.1 |0.3435|0.4450|0.4720|0.1853|0.1920|0.2204|0.3015|0.4594|0.4720|
| ELYZA-japanese-Llama-2-7b-fast-instruct |0.2827|0.3289|0.3907|0.2424|0.1480|0.1584|0.3511|0.3053|0.3365|
| calm2-7b-chat |0.3204|0.4657|0.4898|0.1837|0.1005|0.1414|0.3927|0.3601|0.4293|
| calm2-7b-chat-dpo-experimental |0.3493|0.5312|0.5237|0.1857|0.1000|0.1813|0.3355|0.4320|0.5051|
| RakutenAI-7B-instruct |0.2994|0.3623|0.3711|0.3333|0.1763|0.1581|0.4215|0.2824|0.2901|
| RakutenAI-7B-chat |0.3667|0.4229|0.4644|0.3990|0.2161|0.2390|0.3416|0.3904|0.4601|

##### 13B models

|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-13b-instruct-v0.1 |0.3669|0.4816|0.5562|0.2769|0.1020|0.1505|0.4179|0.4347|0.5150|
| ELYZA-japanese-Llama-2-13b-instruct |0.3196|0.4400|0.4373|0.2098|0.2157|0.1572|0.3583|0.3243|0.4141|
| ELYZA-japanese-Llama-2-13b-fast-instruct |0.3042|0.3729|0.3930|0.1236|0.2492|0.1862|0.4360|0.3233|0.3496|

##### 70B models

|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|---|---|---|---|---|---|---|---|---|---|
| Swallow-70b-instruct-v0.1 |0.4513|0.4822|0.5353|0.3497|0.3492|0.2668|0.5553|0.4955|0.5767|
| japanese-stablelm-instruct-beta-70b |0.3716|0.4179|0.3945|0.3656|0.2580|0.2186|0.4412|0.4663|0.4103|


## Evaluation Benchmarks

### MT-Bench JA

We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the instruction-following capabilities of models.
We utilized the following settings:

- Implemantation: FastChat [Zheng+, 2023] (commit #e86e70d0)
- Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3)
- Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1)
- Prompt for Judge: [Nejumi LLM-Lederboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1)
- Judge: `gpt-4-1106-preview`
- Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs.



## Usage

First install additional dependencies in [requirements.txt](./requirements.txt):

```sh
pip install -r requirements.txt
```

### Instruction format Ver0.1
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.

The template used to construct a prompt for the Instruct model is specified as follows:

```
<s>[INST] <<SYS>>\n{SYSTEM_PROMPT}\n<</SYS>>\n\n{USER_MESSAGE_1} [/INST] {BOT_MESSAGE_1}</s>[INST] {USER_MESSAGE_2} [/INST] 
```


Please be aware that ``<s>`` and ``</s>`` are special tokens used for the beginning of string (BOS) and end of string (EOS), respectively, while [INST] and [/INST] are considered regular strings.

For the "{SYSTEM_PROMPT}" part, We recommend using "あなたは誠実で優秀な日本人のアシスタントです。"

For the "{USER_MESSAGE_1}" part, We recommend using {instruction}\n{input}

In other words, We recommend the following:

``` 
<s>[INST] <<SYS>>\nあなたは誠実で優秀な日本人のアシスタントです。\n<</SYS>>\n\n{instruction1}\n{input1} [/INST] {BOT_MESSAGE_1}</s>[INST] {instruction2}\n{input2} [/INST] 
```


### Use the instruct model Ver0.1

```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

model_name = "tokyotech-llm/Swallow-70b-instruct-v0.1"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

device = "cuda"

messages = [
    {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
    {"role": "user", "content": "東京工業大学の主なキャンパスについて教えてください"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=128, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## Training Datasets

### Instruction Tuning Ver0.1

The following datasets were used for the instruction tuning. 

- [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co./datasets/OpenAssistant/oasst2)
- [OpenAssistant Conversations Dataset](https://huggingface.co./datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) model.
 
## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

## Acknowledgements

We thank Meta Research for releasing Llama 2 under an open license for others to build on.

Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. 

## License

Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.

## Authors

Here are the team members:
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
  - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
  - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
  - [Hiroki Iida](https://meshidenn.github.io/)
  - [Mengsay Loem](https://loem-ms.github.io/)
  - [Shota Hirai](https://huggingface.co./Kotemo428)
  - [Kakeru Hattori](https://aya-se.vercel.app/)
  - [Masanari Ohi](https://twitter.com/stjohn2007)
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
  - [Rio Yokota](https://twitter.com/rioyokota)
  - [Kazuki Fujii](https://twitter.com/okoge_kaz)
  - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
  - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
  - [Ishida Shigeki](https://www.wantedly.com/id/reborn27)

## How to cite

If you find our work helpful, please feel free to cite us.

```
@inproceedings{Fujii:COLM2024,
   title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
Enhancing Japanese Language Capabilities},
   author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
Mizuki and Rio Yokota and Naoaki Okazaki},
   booktitle="Proceedings of the First Conference on Language Modeling",
   series={COLM},
   pages="(to appear)",
   year="2024",
   month=oct,
   address={University of Pennsylvania, USA},
}

@inproceedings{Okazaki:COLM2024,
   title={Building a Large Japanese Web Corpus for Large Language Models},
   author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
Loem and Rio Yokota and Sakae Mizuki},
   booktitle="Proceedings of the First Conference on Language Modeling",
   series={COLM},
   pages="(to appear)",
   year="2024",
   month=oct,
   address={University of Pennsylvania, USA},
}
```