Taishi-N324
commited on
Commit
•
9afb3ac
1
Parent(s):
c4e04b6
Upload README.md
Browse files
README.md
CHANGED
@@ -10,19 +10,20 @@ model_type: llama
|
|
10 |
|
11 |
# Swallow
|
12 |
|
13 |
-
Our Swallow model has undergone
|
14 |
Links to other models can be found in the index.
|
15 |
|
16 |
# Model Release Updates
|
17 |
|
18 |
We are excited to share the release schedule for our latest models:
|
19 |
-
- **April
|
20 |
- **March 2, 2024**: Released the [Swallow-7b-plus-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf), a model trained with approximately twice as many Japanese tokens as [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf).
|
21 |
- **February 4, 2024**: Released the [Swallow-13b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf).
|
22 |
- **January 26, 2024**: Released the [Swallow-7b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf), [Swallow-7b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf), [Swallow-70b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf), and [Swallow-70b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)
|
23 |
- **December 19, 2024**: Released the [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf), [Swallow-7b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf), [Swallow-13b-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-hf), [Swallow-13b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf), [Swallow-70b-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-hf), and [Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf).
|
|
|
24 |
## Swallow Model Index
|
25 |
-
|Model|Swallow-hf|Swallow-instruct-hf|Swallow-instruct-
|
26 |
|---|---|---|---|
|
27 |
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|[Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v1.0)|
|
28 |
|7B-Plus| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf) | N/A | N/A |
|
@@ -39,13 +40,11 @@ We are excited to share the release schedule for our latest models:
|
|
39 |
![logo](./logo.png)
|
40 |
|
41 |
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
|
42 |
-
Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or our [paper](https://www.anlp.jp/proceedings/annual_meeting/2024/pdf_dir/A8-5.pdf)
|
43 |
|
44 |
## Model Details
|
45 |
|
46 |
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
|
47 |
* **Language(s)**: Japanese English
|
48 |
-
* **Library**: [Megatron-LM](https://github.com/rioyokotalab/Megatron-Llama2)
|
49 |
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
|
50 |
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
51 |
|
@@ -53,66 +52,29 @@ Read our [blog post](https://zenn.dev/tokyotech_lm/articles/d6cb3a8fdfc907) or o
|
|
53 |
|
54 |
### MT-Bench JA
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
## Base Model Performance
|
59 |
-
|
60 |
-
### Japanese tasks
|
61 |
|
62 |
-
|Model|
|
63 |
|---|---|---|---|---|---|---|---|---|---|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
| Swallow |
|
67 |
-
| Swallow-
|
68 |
-
| Swallow-
|
69 |
-
|
|
70 |
-
| Swallow | 13B | 0.7837 | 0.5063 | 0.6398 | 0.9005 | 0.2168 | 0.2040 | 0.2720 | 0.1771 |
|
71 |
-
| Swallow-NVE | 13B | 0.7712 | 0.5438 | 0.6351 | 0.9030 | 0.2294 | 0.2120 | 0.2735 | 0.1817 |
|
72 |
-
| Llama 2 | 70B | 0.8686 | 0.4656 | 0.5256 | 0.9080 | 0.2361 | 0.3560 | 0.2643 | **0.2398** |
|
73 |
-
| Swallow | 70B | 0.9348 | **0.6290** | 0.6960 | 0.9176 | 0.2266 | **0.4840** | **0.3043** | 0.2298 |
|
74 |
-
| Swallow-NVE | 70B | **0.9410** | 0.5759 | **0.7024** | **0.9254** | **0.2758** | 0.4720 | 0.3042 | 0.2322 |
|
75 |
-
### English tasks
|
76 |
-
|
77 |
-
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|
|
78 |
-
|---|---|---|---|---|---|---|---|
|
79 |
-
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|
|
80 |
-
| Llama 2 | 7B | 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 |
|
81 |
-
| Swallow | 7B | 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 |
|
82 |
-
| Swallow-Plus | 7B | 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 |
|
83 |
-
| Swallow-NVE | 7B | 0.3180 | 0.5079 | 0.5329 | 0.2919 | 0.8817 | 0.0986 |
|
84 |
-
| Llama 2 | 13B | 0.3760 | 0.7255 | 0.6148 | 0.3681 | 0.9140 | 0.2403 |
|
85 |
-
| Swallow | 13B | 0.3500 | 0.5852 | 0.5660 | 0.3406 | 0.9075 | 0.2039 |
|
86 |
-
| Swallow-NVE | 13B | 0.3460 | 0.6025 | 0.5700 | 0.3478 | 0.9006 | 0.1751 |
|
87 |
-
| Llama 2 | 70B | **0.4280** | **0.8239** | **0.6742** | **0.3770** | **0.9290** | **0.5284** |
|
88 |
-
| Swallow | 70B | 0.4220 | 0.7756 | 0.6458 | 0.3745 | 0.9204 | 0.4867 |
|
89 |
-
| Swallow-NVE | 70B | 0.4240 | 0.7817 | 0.6439 | 0.3451 | 0.9256 | 0.4943 |
|
90 |
|
91 |
## Evaluation Benchmarks
|
92 |
|
93 |
-
###
|
94 |
-
|
95 |
-
We used llm-jp-eval(v1.0.0) and JP Language Model Evaluation Harness(commit #9b42d41). The details are as follows:
|
96 |
-
|
97 |
-
- Multiple-choice question answering (JCommonsenseQA [Kurihara+, 2022])
|
98 |
-
- Open-ended question answering (JEMHopQA [Ishii+, 2023])
|
99 |
-
- Open-ended question answering (NIILC [Sekine, 2003])
|
100 |
-
- Machine reading comprehension (JSQuAD [Kurihara+, 2022])
|
101 |
-
- Automatic summarization (XL-Sum [Hasan+, 2021])
|
102 |
-
- Machine translation (WMT2020 ja-en [Barrault+, 2020])
|
103 |
-
- Machine translation (WMT2020 en-ja [Barrault+, 2020])
|
104 |
-
- Mathematical reasoning (MGSM [Shi+, 2023])
|
105 |
-
|
106 |
-
### English evaluation benchmarks
|
107 |
|
108 |
-
We used
|
|
|
109 |
|
110 |
-
-
|
111 |
-
-
|
112 |
-
-
|
113 |
-
-
|
114 |
-
- Natural language inference (HellaSwag [Zellers+, 2019])
|
115 |
-
- Mathematical reasoning (GSM8k [Cobbe+, 2021])
|
116 |
|
117 |
|
118 |
## Usage
|
@@ -123,7 +85,7 @@ First install additional dependencies in [requirements.txt](./requirements.txt):
|
|
123 |
pip install -r requirements.txt
|
124 |
```
|
125 |
|
126 |
-
### Instruction format
|
127 |
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.
|
128 |
|
129 |
The template used to construct a prompt for the Instruct model is specified as follows:
|
@@ -132,15 +94,18 @@ The template used to construct a prompt for the Instruct model is specified as f
|
|
132 |
<s>[INST] <<SYS>>\n{Instruction}\n<</SYS>>\n\n{USER_MESSAGE_1} [INST] {BOT_MESSAGE_1} </s>[INST] {USER_MESSAGE_2}[/INST]
|
133 |
```
|
134 |
|
135 |
-
Please be aware that
|
|
|
|
|
136 |
|
137 |
-
|
|
|
138 |
|
139 |
```python
|
140 |
import torch
|
141 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
142 |
|
143 |
-
model_name = "tokyotech-llm/Swallow-70b-instruct-
|
144 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
145 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
146 |
|
@@ -161,135 +126,14 @@ decoded = tokenizer.batch_decode(generated_ids)
|
|
161 |
print(decoded[0])
|
162 |
```
|
163 |
|
164 |
-
### Use the instruct model
|
165 |
-
|
166 |
-
**Note:** Please be aware that the inference example is based on a model version older than 1.0.
|
167 |
-
|
168 |
-
|
169 |
-
```python
|
170 |
-
import torch
|
171 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
172 |
-
|
173 |
-
model_name = "tokyotech-llm/Swallow-7b-instruct-hf"
|
174 |
-
|
175 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
176 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto")
|
177 |
-
|
178 |
-
|
179 |
-
PROMPT_DICT = {
|
180 |
-
"prompt_input": (
|
181 |
-
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
|
182 |
-
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
183 |
-
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
|
184 |
-
|
185 |
-
),
|
186 |
-
"prompt_no_input": (
|
187 |
-
"以下に、あるタスクを説明する指示があります。"
|
188 |
-
"リクエストを適切に完了するための回答を記述してください。\n\n"
|
189 |
-
"### 指示:\n{instruction}\n\n### 応答:"
|
190 |
-
),
|
191 |
-
}
|
192 |
-
|
193 |
-
def create_prompt(instruction, input=None):
|
194 |
-
"""
|
195 |
-
Generates a prompt based on the given instruction and an optional input.
|
196 |
-
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
|
197 |
-
If no input is provided, it uses the 'prompt_no_input' template.
|
198 |
-
|
199 |
-
Args:
|
200 |
-
instruction (str): The instruction describing the task.
|
201 |
-
input (str, optional): Additional input providing context for the task. Default is None.
|
202 |
-
|
203 |
-
Returns:
|
204 |
-
str: The generated prompt.
|
205 |
-
"""
|
206 |
-
if input:
|
207 |
-
# Use the 'prompt_input' template when additional input is provided
|
208 |
-
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
|
209 |
-
else:
|
210 |
-
# Use the 'prompt_no_input' template when no additional input is provided
|
211 |
-
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
|
212 |
-
|
213 |
-
# Example usage
|
214 |
-
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
|
215 |
-
input_example = "東京工業大学の主なキャンパスについて教えてください"
|
216 |
-
prompt = create_prompt(instruction_example, input_example)
|
217 |
-
|
218 |
-
input_ids = tokenizer.encode(
|
219 |
-
prompt,
|
220 |
-
add_special_tokens=False,
|
221 |
-
return_tensors="pt"
|
222 |
-
)
|
223 |
-
|
224 |
-
tokens = model.generate(
|
225 |
-
input_ids.to(device=model.device),
|
226 |
-
max_new_tokens=128,
|
227 |
-
temperature=0.99,
|
228 |
-
top_p=0.95,
|
229 |
-
do_sample=True,
|
230 |
-
)
|
231 |
-
|
232 |
-
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
233 |
-
print(out)
|
234 |
-
|
235 |
-
```
|
236 |
-
|
237 |
-
### Use the base model
|
238 |
-
|
239 |
-
```python
|
240 |
-
import torch
|
241 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
242 |
-
|
243 |
-
model_name = "tokyotech-llm/Swallow-7b-hf"
|
244 |
-
|
245 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
246 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
247 |
-
|
248 |
-
prompt = "東京工業大学の主なキャンパスは、"
|
249 |
-
input_ids = tokenizer.encode(
|
250 |
-
prompt,
|
251 |
-
add_special_tokens=False,
|
252 |
-
return_tensors="pt"
|
253 |
-
)
|
254 |
-
tokens = model.generate(
|
255 |
-
input_ids.to(device=model.device),
|
256 |
-
max_new_tokens=128,
|
257 |
-
temperature=0.99,
|
258 |
-
top_p=0.95,
|
259 |
-
do_sample=True,
|
260 |
-
)
|
261 |
-
|
262 |
-
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
263 |
-
print(out)
|
264 |
-
```
|
265 |
-
|
266 |
## Training Datasets
|
267 |
|
268 |
-
###
|
269 |
-
The following datasets were used for continual pre-training.
|
270 |
-
|
271 |
-
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
272 |
-
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
273 |
-
- Swallow Corpus
|
274 |
-
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
275 |
-
|
276 |
-
|
277 |
-
### Instruction Tuning
|
278 |
-
|
279 |
-
#### Ver1.0
|
280 |
|
281 |
The following datasets were used for the instruction tuning.
|
282 |
|
283 |
- [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2)
|
284 |
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/datasets/llm-jp/oasst1-21k-jahttps://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model.
|
285 |
-
|
286 |
-
#### Old
|
287 |
-
|
288 |
-
The following datasets were used for the instruction tuning.
|
289 |
-
|
290 |
-
- [Anthropic HH-RLHF](https://huggingface.co/datasets/kunishou/hh-rlhf-49k-ja)
|
291 |
-
- [Databricks Dolly 15-k](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja)
|
292 |
-
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/kunishou/oasst1-89k-ja)
|
293 |
|
294 |
## Risks and Limitations
|
295 |
|
|
|
10 |
|
11 |
# Swallow
|
12 |
|
13 |
+
Our Swallow model has undergone continual pre-training from the [Llama 2 family](https://huggingface.co/meta-llama), primarily with the addition of Japanese language data. The tuned versions use supervised fine-tuning (SFT).
|
14 |
Links to other models can be found in the index.
|
15 |
|
16 |
# Model Release Updates
|
17 |
|
18 |
We are excited to share the release schedule for our latest models:
|
19 |
+
- **April 26, 2024**: Released version 0.1 of our enhanced instruction-tuned models: [Swallow-7b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v0.1), [Swallow-13b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-v0.1), and [Swallow-70b-instruct-v0.1](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-v0.1) as preview versions.
|
20 |
- **March 2, 2024**: Released the [Swallow-7b-plus-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf), a model trained with approximately twice as many Japanese tokens as [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf).
|
21 |
- **February 4, 2024**: Released the [Swallow-13b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-NVE-hf).
|
22 |
- **January 26, 2024**: Released the [Swallow-7b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-hf), [Swallow-7b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-NVE-instruct-hf), [Swallow-70b-NVE-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-hf), and [Swallow-70b-NVE-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-NVE-instruct-hf)
|
23 |
- **December 19, 2024**: Released the [Swallow-7b-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-hf), [Swallow-7b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf), [Swallow-13b-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-hf), [Swallow-13b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-13b-instruct-hf), [Swallow-70b-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-hf), and [Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf).
|
24 |
+
|
25 |
## Swallow Model Index
|
26 |
+
|Model|Swallow-hf|Swallow-instruct-hf|Swallow-instruct-v0.1|
|
27 |
|---|---|---|---|
|
28 |
|7B| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-hf) | [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-hf)|[Link](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v1.0)|
|
29 |
|7B-Plus| [Link](https://huggingface.co/tokyotech-llm/Swallow-7b-plus-hf) | N/A | N/A |
|
|
|
40 |
![logo](./logo.png)
|
41 |
|
42 |
This repository provides large language models developed by [TokyoTech-LLM](https://tokyotech-llm.github.io/).
|
|
|
43 |
|
44 |
## Model Details
|
45 |
|
46 |
* **Model type**: Please refer to LLaMA-2 technical report for details on the model architecture.
|
47 |
* **Language(s)**: Japanese English
|
|
|
48 |
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
|
49 |
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
50 |
|
|
|
52 |
|
53 |
### MT-Bench JA
|
54 |
|
55 |
+
* NOTE that the models with the `v0.1` suffix are newer versions compared to their original counterparts with the `hf`.
|
56 |
+
* We will update the score of `Swallow-70b-instruct-hf` soon.
|
|
|
|
|
|
|
57 |
|
58 |
+
|Model|Average|Writing|Roleplay|Reasoning|Math|Coding|Extraction|STEM|Humanities|
|
59 |
|---|---|---|---|---|---|---|---|---|---|
|
60 |
+
| Swallow-7b-instruct-v0.1 |0.3435|0.4450|0.4720|0.1853|0.1920|0.2204|0.3015|0.4594|0.4720|
|
61 |
+
| Swallow-7b-instruct-hf |0.1833|0.2205|0.1975|0.1593|0.1045|0.1282|0.2672|0.1908|0.1980|
|
62 |
+
| Swallow-13b-instruct-v0.1 |0.3669|0.4816|0.5562|0.2769|0.1020|0.1505|0.4179|0.4347|0.5150|
|
63 |
+
| Swallow-13b-instruct-hf |0.2004|0.1932|0.2552|0.1507|0.1184|0.1285|0.2641|0.2434|0.2500|
|
64 |
+
| Swallow-70b-instruct-v0.1 |0.4513|0.4822|0.5353|0.3497|0.3492|0.2668|0.5553|0.4955|0.5767|
|
65 |
+
| Swallow-70b-instruct-hf |N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A|N/A|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
## Evaluation Benchmarks
|
68 |
|
69 |
+
### MT-Bench JA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question).
|
72 |
+
We utilized the following artifacts:
|
73 |
|
74 |
+
- Implemantation: FastChat [Zheng+, 2023] (commit #e86e70d0)
|
75 |
+
- Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3)
|
76 |
+
- Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1)
|
77 |
+
- Prompt for Judge: [Nejumi LLM-Lederboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1)
|
|
|
|
|
78 |
|
79 |
|
80 |
## Usage
|
|
|
85 |
pip install -r requirements.txt
|
86 |
```
|
87 |
|
88 |
+
### Instruction format Ver0.1
|
89 |
This format must be adhered to strictly, as deviations may result in less optimal outputs from the model.
|
90 |
|
91 |
The template used to construct a prompt for the Instruct model is specified as follows:
|
|
|
94 |
<s>[INST] <<SYS>>\n{Instruction}\n<</SYS>>\n\n{USER_MESSAGE_1} [INST] {BOT_MESSAGE_1} </s>[INST] {USER_MESSAGE_2}[/INST]
|
95 |
```
|
96 |
|
97 |
+
Please be aware that ``<s>`` and ``</s>`` are special tokens used for the beginning of string (BOS) and end of string (EOS), respectively, while [INST] and [/INST] are considered regular strings.
|
98 |
+
|
99 |
+
For the "{Instruction}" part, We recommend using "あなたは誠実で優秀な日本人のアシスタ��トです。"
|
100 |
|
101 |
+
|
102 |
+
### Use the instruct model Ver0.1
|
103 |
|
104 |
```python
|
105 |
import torch
|
106 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
107 |
|
108 |
+
model_name = "tokyotech-llm/Swallow-70b-instruct-v0.1"
|
109 |
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
110 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
111 |
|
|
|
126 |
print(decoded[0])
|
127 |
```
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
## Training Datasets
|
130 |
|
131 |
+
### Instruction Tuning Ver0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
The following datasets were used for the instruction tuning.
|
134 |
|
135 |
- [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2)
|
136 |
- [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/datasets/llm-jp/oasst1-21k-jahttps://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
## Risks and Limitations
|
139 |
|