You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Dragonfly Model Card

Note: Users are permitted to use this model in accordance with the Llama 3 Community License Agreement.

Model Details

Dragonfly is a multimodal visual-language model, trained by instruction tuning on Llama 3.

Model Sources

Uses

The primary use of Dragonfly is research on large visual-language models. It is primarily intended for researchers and hobbyists in natural language processing, machine learning, and artificial intelligence.

How to Get Started with the Model

πŸ’Ώ Installation

Create a conda environment and install necessary packages

conda env create -f environment.yml
conda activate dragonfly_env

Install flash attention

pip install flash-attn --no-build-isolation

As a final step, please run the following command.

pip install --upgrade -e .

🧠 Inference

If you have successfully completed the installation process, then you should be able to follow the steps below.

Question: Summarize the visual content of the image.

Skateboard

Load necessary packages

import torch
from PIL import Image
from transformers import AutoProcessor, AutoTokenizer

from dragonfly.models.modeling_dragonfly import DragonflyForCausalLM
from dragonfly.models.processing_dragonfly import DragonflyProcessor
from pipeline.train.train_utils import random_seed

Instantiate the tokenizer, processor, and model.

device = torch.device("cuda:0")

tokenizer = AutoTokenizer.from_pretrained("togethercomputer/Llama-3-8B-Dragonfly-v1")
clip_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
image_processor = clip_processor.image_processor
processor = DragonflyProcessor(image_processor=image_processor, tokenizer=tokenizer, image_encoding_style="llava-hd")

model = DragonflyForCausalLM.from_pretrained("togethercomputer/Llama-3-8B-Dragonfly-v1")
model = model.to(torch.bfloat16)
model = model.to(device)

Now, lets load the image and process them.

image = Image.open("./test_images/skateboard.png")
image = image.convert("RGB")
images = [image]
# images = [None] # if you do not want to pass any images

text_prompt = "<|start_header_id|>user<|end_header_id|>\n\nSummarize the visual content of the image.<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"

inputs = processor(text=[text_prompt], images=images, max_length=2048, return_tensors="pt", is_generate=True)
inputs = inputs.to(device)

Finally, let us generate the responses from the model

temperature = 0

with torch.inference_mode():
    generation_output = model.generate(**inputs, max_new_tokens=1024, eos_token_id=tokenizer.encode("<|eot_id|>"), do_sample=temperature > 0, temperature=temperature, use_cache=True)

generation_text = processor.batch_decode(generation_output, skip_special_tokens=False)

An example response.

In the heart of a vibrant skatepark, a skateboarder is caught in a moment of pure exhilaration. The skateboarder, dressed in a black t-shirt adorned with a yellow graphic and black pants, is suspended in mid-air, performing an impressive trick on a concrete ramp. The skateboarder's arms are outstretched, adding balance to the daring stunt.

The skatepark itself is a concrete playground, with the skateboarder's ramp being the main focus. In the background, palm trees sway gently, adding a touch of nature to the urban setting. A few spectators can be seen in the distance, their attention riveted on the airborne skateboarder.

The image captures not just a moment, but a story of skill, courage, and the joy of skateboarding.<|eot_id|>

Training Details

See more details in the "Implementation" section of our paper.

Evaluation

See more details in the "Results" section of our paper.

πŸ† Credits

We would like to acknowledge the following resources that were instrumental in the development of Dragonfly:

πŸ“š BibTeX

@misc{chen2024dragonfly,
      title={Dragonfly: Multi-Resolution Zoom Supercharges Large Visual-Language Model}, 
      author={Kezhen Chen and Rahul Thapa and Rahul Chalamala and Ben Athiwaratkun and Shuaiwen Leon Song and James Zou},
      year={2024},
      eprint={2406.00977},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Model Card Authors

Rahul Thapa, Kezhen Chen, Rahul Chalamala

Model Card Contact

Rahul Thapa ([email protected]), Kezhen Chen ([email protected])

Downloads last month
2
Inference Examples
Inference API (serverless) does not yet support transformers models for this pipeline type.