tmnam20's picture
Upload README.md with huggingface_hub
1653483 verified
---
language:
- en
license: mit
base_model: microsoft/mdeberta-v3-base
tags:
- generated_from_trainer
datasets:
- tmnam20/VieGLUE
metrics:
- accuracy
model-index:
- name: mdeberta-v3-base-sst2-100
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tmnam20/VieGLUE/SST2
type: tmnam20/VieGLUE
config: sst2
split: validation
args: sst2
metrics:
- name: Accuracy
type: accuracy
value: 0.8944954128440367
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mdeberta-v3-base-sst2-100
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co./microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3880
- Accuracy: 0.8945
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3414 | 0.24 | 500 | 0.3477 | 0.8681 |
| 0.2858 | 0.48 | 1000 | 0.3121 | 0.8911 |
| 0.2358 | 0.71 | 1500 | 0.3466 | 0.8807 |
| 0.2413 | 0.95 | 2000 | 0.3225 | 0.8819 |
| 0.1722 | 1.19 | 2500 | 0.3268 | 0.8933 |
| 0.1926 | 1.43 | 3000 | 0.3712 | 0.8899 |
| 0.1766 | 1.66 | 3500 | 0.3130 | 0.9014 |
| 0.1706 | 1.9 | 4000 | 0.3517 | 0.8899 |
| 0.1308 | 2.14 | 4500 | 0.3970 | 0.9014 |
| 0.1315 | 2.38 | 5000 | 0.3525 | 0.8991 |
| 0.1504 | 2.61 | 5500 | 0.3728 | 0.8968 |
| 0.1178 | 2.85 | 6000 | 0.3987 | 0.8922 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0