update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: working
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# working
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.2584
|
18 |
+
- Wer: 0.6024
|
19 |
+
- Cer: 0.0723
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 3e-05
|
39 |
+
- train_batch_size: 2
|
40 |
+
- eval_batch_size: 8
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
+
- total_train_batch_size: 4
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_steps: 2000
|
47 |
+
- training_steps: 70000
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
54 |
+
| 2.0401 | 1.49 | 1000 | 1.3913 | 0.9911 | 0.4127 |
|
55 |
+
| 1.2772 | 2.98 | 2000 | 0.4117 | 0.7644 | 0.1036 |
|
56 |
+
| 1.0861 | 4.46 | 3000 | 0.3281 | 0.6962 | 0.0868 |
|
57 |
+
| 1.0803 | 5.95 | 4000 | 0.2970 | 0.6645 | 0.0796 |
|
58 |
+
| 1.0256 | 7.44 | 5000 | 0.2986 | 0.6556 | 0.0820 |
|
59 |
+
| 0.9536 | 8.93 | 6000 | 0.2873 | 0.6418 | 0.0767 |
|
60 |
+
| 0.9154 | 10.42 | 7000 | 0.3896 | 0.6450 | 0.0812 |
|
61 |
+
| 0.9187 | 11.9 | 8000 | 0.2946 | 0.6239 | 0.0771 |
|
62 |
+
| 0.8693 | 13.39 | 9000 | 0.2655 | 0.6093 | 0.0746 |
|
63 |
+
| 0.8335 | 14.88 | 10000 | 0.2797 | 0.6052 | 0.0764 |
|
64 |
+
| 0.8461 | 16.37 | 11000 | 0.2879 | 0.6231 | 0.0766 |
|
65 |
+
| 0.8363 | 17.86 | 12000 | 0.2616 | 0.6052 | 0.0726 |
|
66 |
+
| 0.796 | 19.35 | 13000 | 0.2656 | 0.6109 | 0.0740 |
|
67 |
+
| 0.8136 | 20.83 | 14000 | 0.2773 | 0.6255 | 0.0747 |
|
68 |
+
| 0.7319 | 22.32 | 15000 | 0.2770 | 0.6214 | 0.0748 |
|
69 |
+
| 0.7428 | 23.81 | 16000 | 0.2697 | 0.6052 | 0.0746 |
|
70 |
+
| 0.7264 | 25.3 | 17000 | 0.2716 | 0.5971 | 0.0733 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.17.0
|
76 |
+
- Pytorch 2.4.0
|
77 |
+
- Datasets 3.0.1
|
78 |
+
- Tokenizers 0.20.0
|