tinybee commited on
Commit
57465d3
·
1 Parent(s): 1a4c305

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: working
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # working
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.2584
18
+ - Wer: 0.6024
19
+ - Cer: 0.0723
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 3e-05
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 2
43
+ - total_train_batch_size: 4
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_steps: 2000
47
+ - training_steps: 70000
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
53
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
54
+ | 2.0401 | 1.49 | 1000 | 1.3913 | 0.9911 | 0.4127 |
55
+ | 1.2772 | 2.98 | 2000 | 0.4117 | 0.7644 | 0.1036 |
56
+ | 1.0861 | 4.46 | 3000 | 0.3281 | 0.6962 | 0.0868 |
57
+ | 1.0803 | 5.95 | 4000 | 0.2970 | 0.6645 | 0.0796 |
58
+ | 1.0256 | 7.44 | 5000 | 0.2986 | 0.6556 | 0.0820 |
59
+ | 0.9536 | 8.93 | 6000 | 0.2873 | 0.6418 | 0.0767 |
60
+ | 0.9154 | 10.42 | 7000 | 0.3896 | 0.6450 | 0.0812 |
61
+ | 0.9187 | 11.9 | 8000 | 0.2946 | 0.6239 | 0.0771 |
62
+ | 0.8693 | 13.39 | 9000 | 0.2655 | 0.6093 | 0.0746 |
63
+ | 0.8335 | 14.88 | 10000 | 0.2797 | 0.6052 | 0.0764 |
64
+ | 0.8461 | 16.37 | 11000 | 0.2879 | 0.6231 | 0.0766 |
65
+ | 0.8363 | 17.86 | 12000 | 0.2616 | 0.6052 | 0.0726 |
66
+ | 0.796 | 19.35 | 13000 | 0.2656 | 0.6109 | 0.0740 |
67
+ | 0.8136 | 20.83 | 14000 | 0.2773 | 0.6255 | 0.0747 |
68
+ | 0.7319 | 22.32 | 15000 | 0.2770 | 0.6214 | 0.0748 |
69
+ | 0.7428 | 23.81 | 16000 | 0.2697 | 0.6052 | 0.0746 |
70
+ | 0.7264 | 25.3 | 17000 | 0.2716 | 0.5971 | 0.0733 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.17.0
76
+ - Pytorch 2.4.0
77
+ - Datasets 3.0.1
78
+ - Tokenizers 0.20.0